ﻻ يوجد ملخص باللغة العربية
We point out that the location of renormalon singularities in theory on a circle-compactified spacetime $mathbb{R}^{d-1} times S^1$ (with a small radius $R Lambda ll 1$) can differ from that on the non-compactified spacetime $mathbb{R}^d$. We argue this under the following assumptions, which are often realized in large $N$ theories with twisted boundary conditions: (i) a loop integrand of a renormalon diagram is volume independent, i.e. it is not modified by the compactification, and (ii) the loop momentum variable along the $S^1$ direction is not associated with the twisted boundary conditions and takes the values $n/R$ with integer $n$. We find that the Borel singularity is generally shifted by $-1/2$ in the Borel $u$-plane, where the renormalon ambiguity of $mathcal{O}(Lambda^k)$ is changed to $mathcal{O}(Lambda^{k-1}/R)$ due to the circle compactification $mathbb{R}^d to mathbb{R}^{d-1} times S^1$. The result is general for any dimension $d$ and is independent of details of the quantities under consideration. As an example, we study the $mathbb{C} P^{N-1}$ model on $mathbb{R} times S^1$ with $mathbb{Z}_N$ twisted boundary conditions in the large $N$ limit.
We study the infrared renormalon in the gluon condensate in the $SU(N)$ gauge theory with $n_W$-flavor adjoint Weyl fermions (QCD(adj.)) on~$mathbb{R}^3times S^1$ with the $mathbb{Z}_N$ twisted boundary conditions. We rely on the so-called large-$bet
We present additional observations to previous studies on the infrared (IR) renormalon in $SU(N)$ QCD(adj.), the $SU(N)$ gauge theory with $n_W$-flavor adjoint Weyl fermions on~$mathbb{R}^3times S^1$ with the $mathbb{Z}_N$ twisted boundary condition.
In the leading order of the large-$N$ approximation, we study the renormalon ambiguity in the gluon (or, more appropriately, photon) condensate in the 2D supersymmetric $mathbb{C}P^{N-1}$ model on~$mathbb{R}times S^1$ with the $mathbb{Z}_N$ twisted b
We investigate topological effects of a cosmic string and compactification of a spatial dimension on the vacuum expectation value (VEV) of the energy-momentum tensor for a fermionic field in (4+1)-dimensional locally AdS spacetime. The contribution i
The vacuum expectation value of the current density for a charged scalar field is investigated in Rindler spacetime with a part of spatial dimensions compactified to a torus. It is assumed that the field is prepared in the Fulling-Rindler vacuum stat