ترغب بنشر مسار تعليمي؟ اضغط هنا

Renormalon structure in compactified spacetime

68   0   0.0 ( 0 )
 نشر من قبل Hiromasa Takaura
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We point out that the location of renormalon singularities in theory on a circle-compactified spacetime $mathbb{R}^{d-1} times S^1$ (with a small radius $R Lambda ll 1$) can differ from that on the non-compactified spacetime $mathbb{R}^d$. We argue this under the following assumptions, which are often realized in large $N$ theories with twisted boundary conditions: (i) a loop integrand of a renormalon diagram is volume independent, i.e. it is not modified by the compactification, and (ii) the loop momentum variable along the $S^1$ direction is not associated with the twisted boundary conditions and takes the values $n/R$ with integer $n$. We find that the Borel singularity is generally shifted by $-1/2$ in the Borel $u$-plane, where the renormalon ambiguity of $mathcal{O}(Lambda^k)$ is changed to $mathcal{O}(Lambda^{k-1}/R)$ due to the circle compactification $mathbb{R}^d to mathbb{R}^{d-1} times S^1$. The result is general for any dimension $d$ and is independent of details of the quantities under consideration. As an example, we study the $mathbb{C} P^{N-1}$ model on $mathbb{R} times S^1$ with $mathbb{Z}_N$ twisted boundary conditions in the large $N$ limit.



قيم البحث

اقرأ أيضاً

We study the infrared renormalon in the gluon condensate in the $SU(N)$ gauge theory with $n_W$-flavor adjoint Weyl fermions (QCD(adj.)) on~$mathbb{R}^3times S^1$ with the $mathbb{Z}_N$ twisted boundary conditions. We rely on the so-called large-$bet a_0$ approximation as a conventional tool to analyze the renormalon, in which only Feynman diagrams that dominate in the large-$n_W$ limit are considered while the coefficient of the vacuum polarization is set by hand to the one-loop beta function~$beta_0=11/3-2n_W/3$. In the large~$N$ limit within the large-$beta_0$ approximation, the W-boson, which acquires the twisted Kaluza--Klein momentum, produces the renormalon ambiguity corresponding to the Borel singularity at~$u=2$. This provides an example that the system in the compactified space~$mathbb{R}^3times S^1$ possesses the renormalon ambiguity identical to that in the uncompactified space~$mathbb{R}^4$. We also discuss the subtle issue that the location of the Borel singularity can change depending on the order of two necessary operations.
We present additional observations to previous studies on the infrared (IR) renormalon in $SU(N)$ QCD(adj.), the $SU(N)$ gauge theory with $n_W$-flavor adjoint Weyl fermions on~$mathbb{R}^3times S^1$ with the $mathbb{Z}_N$ twisted boundary condition. First, we show that, for arbitrary finite~$N$, a logarithmic factor in the vacuum polarization of the photon (the gauge boson associated with the Cartan generators of~$SU(N)$) disappears under the $S^1$~compactification. Since the IR renormalon is attributed to the presence of this logarithmic factor, it is concluded that there is no IR renormalon in this system with finite~$N$. This result generalizes the observation made by Anber and~Sulejmanpasic [J. High Energy Phys. textbf{1501}, 139 (2015)] for $N=2$ and~$3$ to arbitrary finite~$N$. Next, we point out that, although renormalon ambiguities do not appear through the Borel procedure in this system, an ambiguity appears in an alternative resummation procedure in which a resummed quantity is given by a momentum integration where the inverse of the vacuum polarization is included as the integrand. Such an ambiguity is caused by a simple zero at non-zero momentum of the vacuum polarization. Under the decompactification~$Rtoinfty$, where $R$ is the radius of the $S^1$, this ambiguity in the momentum integration smoothly reduces to the IR renormalon ambiguity in~$mathbb{R}^4$. We term this ambiguity in the momentum integration renormalon precursor. The emergence of the IR renormalon ambiguity in~$mathbb{R}^4$ under the decompactification can be naturally understood with this notion.
In the leading order of the large-$N$ approximation, we study the renormalon ambiguity in the gluon (or, more appropriately, photon) condensate in the 2D supersymmetric $mathbb{C}P^{N-1}$ model on~$mathbb{R}times S^1$ with the $mathbb{Z}_N$ twisted b oundary conditions. In our large~$N$ limit, the combination $Lambda R$, where $Lambda$ is the dynamical scale and $R$~is the $S^1$ radius, is kept fixed (we set $Lambda Rll1$ so that the perturbative expansion with respect to the coupling constant at the mass scale~$1/R$ is meaningful). We extract the perturbative part from the large-$N$ expression of the gluon condensate and obtain the corresponding Borel transform~$B(u)$. For~$mathbb{R}times S^1$, we find that the Borel singularity at~$u=2$, which exists in the system on the uncompactified~$mathbb{R}^2$ and corresponds to twice the minimal bion action, disappears. Instead, an unfamiliar renormalon singularity emph{emerges/} at~$u=3/2$ for the compactified space~$mathbb{R}times S^1$. The semi-classical interpretation of this peculiar singularity is not clear because $u=3/2$ is not dividable by the minimal bion action. It appears that our observation for the system on~$mathbb{R}times S^1$ prompts reconsideration on the semi-classical bion picture of the infrared renormalon.
We investigate topological effects of a cosmic string and compactification of a spatial dimension on the vacuum expectation value (VEV) of the energy-momentum tensor for a fermionic field in (4+1)-dimensional locally AdS spacetime. The contribution i nduced by the compactification is explicitly extracted by using the Abel-Plana summation formula. The mean energy-momentum tensor is diagonal and the vacuum stresses along the direction perpendicular to the AdS boundary and along the cosmic string are equal to the energy density. All the components are even periodic functions of the magnetic fluxes inside the string core and enclosed by compact dimension, with the period equal to the flux quantum. The vacuum energy density can be either positive or negative, depending on the values of the parameters and the distance from the string. The topological contributions in the VEV of the energy-momentum tensor vanish on the AdS boundary. Near the string the effects of compactification and gravitational field are weak and the leading term in the asymptotic expansion coincides with the corresponding VEV in (4+1)-dimensional Minkowski spacetime. At large distances, the decay of the cosmic string induced contribution in the vacuum energy-momentum tensor, as a function of the proper distance from the string, follows a power law. For a cosmic string in the Minkowski bulk and for massive fields the corresponding fall off is exponential. Within the framework of the AdS/CFT correspondence, the geometry for conformal field theory on the AdS boundary corresponds to the standard cosmic string in (3+1)-dimensional Minkowski spacetime compactified along its axis.
The vacuum expectation value of the current density for a charged scalar field is investigated in Rindler spacetime with a part of spatial dimensions compactified to a torus. It is assumed that the field is prepared in the Fulling-Rindler vacuum stat e. For general values of the phases in the periodicity conditions and the lengths of compact dimensions, the expressions are provided for the Hadamard function and vacuum currents. The current density along compact dimensions is a periodic function of the magnetic flux enclosed by those dimensions and vanishes on the Rindler horizon. The obtained results are compared with the corresponding currents in the Minkowski vacuum. The near-horizon and large-distance asymptotics are discussed for the vacuum currents around cylindrical black holes. In the near-horizon approximation the lengths of compact dimensions are determined by the horizon radius. At large distances from the horizon the geometry is approximated by a locally anti-de Sitter spacetime with toroidally compact dimensions and the lengths of compact dimensions are determined by negative cosmological constant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا