ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-level Bayes and MAP monotonicity testing

77   0   0.0 ( 0 )
 نشر من قبل Christophe Pouet
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Yuri Golubev




اسأل ChatGPT حول البحث

In this paper, we develop Bayes and maximum a posteriori probability (MAP) approaches to monotonicity testing. In order to simplify this problem, we consider a simple white Gaussian noise model and with the help of the Haar transform we reduce it to the equivalent problem of testing positivity of the Haar coefficients. This approach permits, in particular, to understand links between monotonicity testing and sparse vectors detection, to construct new tests, and to prove their optimality without supplementary assumptions. The main idea in our construction of multi-level tests is based on some invariance properties of specific probability distributions. Along with Bayes and MAP tests, we construct also adaptive multi-level tests that are free from the prior information about the sizes of non-monotonicity segments of the function.



قيم البحث

اقرأ أيضاً

Smoothing splines can be thought of as the posterior mean of a Gaussian process regression in a certain limit. By constructing a reproducing kernel Hilbert space with an appropriate inner product, the Bayesian form of the V-spline is derived when the penalty term is a fixed constant instead of a function. An extension to the usual generalized cross-validation formula is utilized to find the optimal V-spline parameters.
Consider the problem of simultaneous testing for the means of independent normal observations. In this paper, we study some asymptotic optimality properties of certain multiple testing rules induced by a general class of one-group shrinkage priors in a Bayesian decision theoretic framework, where the overall loss is taken as the number of misclassified hypotheses. We assume a two-groups normal mixture model for the data and consider the asymptotic framework adopted in Bogdan et al. (2011) who introduced the notion of asymptotic Bayes optimality under sparsity in the context of multiple testing. The general class of one-group priors under study is rich enough to include, among others, the families of three parameter beta, generalized double Pareto priors, and in particular the horseshoe, the normal-exponential-gamma and the Strawderman-Berger priors. We establish that within our chosen asymptotic framework, the multiple testing rules under study asymptotically attain the risk of the Bayes Oracle up to a multiplicative factor, with the constant in the risk close to the constant in the Oracle risk. This is similar to a result obtained in Datta and Ghosh (2013) for the multiple testing rule based on the horseshoe estimator introduced in Carvalho et al. (2009, 2010). We further show that under very mild assumption on the underlying sparsity parameter, the induced decision rules based on an empirical Bayes estimate of the corresponding global shrinkage parameter proposed by van der Pas et al. (2014), attain the optimal Bayes risk up to the same multiplicative factor asymptotically. We provide a unifying argument applicable for the general class of priors under study. In the process, we settle a conjecture regarding optimality property of the generalized double Pareto priors made in Datta and Ghosh (2013). Our work also shows that the result in Datta and Ghosh (2013) can be improved further.
128 - Denis Chetverikov 2012
Monotonicity is a key qualitative prediction of a wide array of economic models derived via robust comparative statics. It is therefore important to design effective and practical econometric methods for testing this prediction in empirical analysis. This paper develops a general nonparametric framework for testing monotonicity of a regression function. Using this framework, a broad class of new tests is introduced, which gives an empirical researcher a lot of flexibility to incorporate ex ante information she might have. The paper also develops new methods for simulating critical values, which are based on the combination of a bootstrap procedure and new selection algorithms. These methods yield tests that have correct asymptotic size and are asymptotically nonconservative. It is also shown how to obtain an adaptive rate optimal test that has the best attainable rate of uniform consistency against models whose regression function has Lipschitz-continuous first-order derivatives and that automatically adapts to the unknown smoothness of the regression function. Simulations show that the power of the new tests in many cases significantly exceeds that of some prior tests, e.g. that of Ghosal, Sen, and Van der Vaart (2000). An application of the developed procedures to the dataset of Ellison and Ellison (2011) shows that there is some evidence of strategic entry deterrence in pharmaceutical industry where incumbents may use strategic investment to prevent generic entries when their patents expire.
In the sparse normal means model, coverage of adaptive Bayesian posterior credible sets associated to spike and slab prior distributions is considered. The key sparsity hyperparameter is calibrated via marginal maximum likelihood empirical Bayes. Fir st, adaptive posterior contraction rates are derived with respect to $d_q$--type--distances for $qleq 2$. Next, under a type of so-called excessive-bias conditions, credible sets are constructed that have coverage of the true parameter at prescribed $1-alpha$ confidence level and at the same time are of optimal diameter. We also prove that the previous conditions cannot be significantly weakened from the minimax perspective.
This paper explores a class of empirical Bayes methods for level-dependent threshold selection in wavelet shrinkage. The prior considered for each wavelet coefficient is a mixture of an atom of probability at zero and a heavy-tailed density. The mixi ng weight, or sparsity parameter, for each level of the transform is chosen by marginal maximum likelihood. If estimation is carried out using the posterior median, this is a random thresholding procedure; the estimation can also be carried out using other thresholding rules with the same threshold. Details of the calculations needed for implementing the procedure are included. In practice, the estimates are quick to compute and there is software available. Simulations on the standard model functions show excellent performance, and applications to data drawn from various fields of application are used to explore the practical performance of the approach. By using a general result on the risk of the corresponding marginal maximum likelihood approach for a single sequence, overall bounds on the risk of the method are found subject to membership of the unknown function in one of a wide range of Besov classes, covering also the case of f of bounded variation. The rates obtained are optimal for any value of the parameter p in (0,infty], simultaneously for a wide range of loss functions, each dominating the L_q norm of the sigmath derivative, with sigmage0 and 0<qle2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا