ترغب بنشر مسار تعليمي؟ اضغط هنا

Phenomenology of anomalous transport in disordered one-dimensional systems

195   0   0.0 ( 0 )
 نشر من قبل Scott Taylor
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study anomalous transport arising in disordered one-dimensional spin chains, specifically focusing on the subdiffusive transport typically found in a phase preceding the many-body localization transition. Different types of transport can be distinguished by the scaling of the average resistance with the systems length. We address the following question: what is the distribution of resistance over different disorder realizations, and how does it differ between transport types? In particular, an often evoked so-called Griffiths picture, that aims to explain slow transport as being due to rare regions of high disorder, would predict that the diverging resistivity is due to fat power-law tails in the resistance distribution. Studying many-particle systems with and without interactions we do not find any clear signs of fat tails. The data is compatible with distributions that decay faster than any power law required by the fat tails scenario. Among the distributions compatible with the data, a simple additivity argument suggests a Gaussian distribution for a fractional power of the resistance.



قيم البحث

اقرأ أيضاً

We study the problem of wave transport in a one-dimensional disordered system, where the scatterers of the chain are $n$ barriers and wells with statistically independent intensities and with a spatial extension $l_c$ which may contain an arbitrary n umber $delta/2pi$ of wavelengths, where $delta = k l_c$. We analyze the average Landauer resistance and transmission coefficient of the chain as a function of $n$ and the phase parameter $delta$. For weak scatterers, we find: i) a regime, to be called I, associated with an exponential behavior of the resistance with $n$, ii) a regime, to be called II, for $delta$ in the vicinity of $pi$, where the system is almost transparent and less localized, and iii) right in the middle of regime II, for $delta$ very close to $pi$, the formation of a band gap, which becomes ever more conspicuous as $n$ increases. In regime II, both the average Landauer resistance and the transmission coefficient show an oscillatory behavior with $n$ and $delta$. These characteristics of the system are found analytically, some of them exactly and some others approximately. The agreement between theory and simulations is excellent, which suggests a strong motivation for the experimental study of these systems. We also present a qualitative discussion of the results.
We study energy transport in XXZ spin chains driven to nonequilibrium configurations by thermal reservoirs of different temperatures at the boundaries. We discuss the transition between diffusive and subdiffusive transport regimes in sectors of zero and finite magnetization at high temperature. At large anisotropies we find that diffusive energy transport prevails over a large range of disorder strengths, which is in contrast to spin transport that is subdiffusive in the same regime for weak disorder strengths. However, when finite magnetization is induced, both energy and spin currents decay as a function of system size with the same exponent. Based on this, we conclude that diffusion of energy is much more pervasive than that of magnetization in these disordered spin-1/2 systems, and occurs across a significant range of the interaction-disorder parameter phase-space; we suggest this is due to conservation laws present in the clean XXZ limit.
The transport of excitations between pinned particles in many physical systems may be mapped to single-particle models with power-law hopping, $1/r^a$. For randomly spaced particles, these models present an effective peculiar disorder that leads to s urprising localization properties. We show that in one-dimensional systems almost all eigenstates (except for a few states close to the ground state) are power-law localized for any value of $a>0$. Moreover, we show that our model is an example of a new universality class of models with power-law hopping, characterized by a duality between systems with long-range hops ($a<1$) and short-range hops ($a>1$) in which the wave function amplitude falls off algebraically with the same power $gamma$ from the localization center.
As a potential window on transitions out of the ergodic, many-body-delocalized phase, we study the dephasing of weakly disordered, quasi-one-dimensional fermion systems due to a diffusive, non-Markovian noise bath. Such a bath is self-generated by th e fermions, via inelastic scattering mediated by short-ranged interactions. We calculate the dephasing of weak localization perturbatively through second order in the bath coupling. However, the expansion breaks down at long times, and is not stabilized by including a mean-field decay rate, signaling a failure of the self-consistent Born approximation. We also consider a many-channel quantum wire where short-ranged, spin-exchange interactions coexist with screened Coulomb interactions. We calculate the dephasing rate, treating the short-ranged interactions perturbatively and the Coulomb interaction exactly. The latter provides a physical infrared regularization that stabilizes perturbation theory at long times, giving the first controlled calculation of quasi-1D dephasing due to diffusive noise. At first order in the diffusive bath coupling, we find an enhancement of the dephasing rate, but at second order we find a rephasing contribution. Our results differ qualitatively from those obtained via self-consistent calculations and are relevant in two different contexts. First, in the search for precursors to many-body localization in the ergodic phase. Second, our results provide a mechanism for the enhancement of dephasing at low temperatures in spin SU(2)-symmetric quantum wires, beyond the Altshuler-Aronov-Khmelnitsky result. The enhancement is possible due to the amplification of the triplet-channel interaction strength, and provides an additional mechanism that could contribute to the experimentally observed low-temperature saturation of the dephasing time.
201 - A.V. Plyukhin 2005
In the conventional theory of hopping transport the positions of localized electronic states are assumed to be fixed, and thermal fluctuations of atoms enter the theory only through the notion of phonons. On the other hand, in 1D and 2D lattices, whe re fluctuations prevent formation of long-range order, the motion of atoms has the character of the large scale diffusion. In this case the picture of static localized sites may be inadequate. We argue that for a certain range of parameters, hopping of charge carriers among localization sites in a network of 1D chains is a much slower process than diffusion of the sites themselves. Then the carriers move through the network transported along the chains by mobile localization sites jumping occasionally between the chains. This mechanism may result in temperature independent mobility and frequency dependence similar to that for conventional hopping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا