ﻻ يوجد ملخص باللغة العربية
Under special circumstances, summaries should conform to a particular style with patterns, such as court judgments and abstracts in academic papers. To this end, the prototype document-summary pairs can be utilized to generate better summaries. There are two main challenges in this task: (1) the model needs to incorporate learned patterns from the prototype, but (2) should avoid copying contents other than the patternized words---such as irrelevant facts---into the generated summaries. To tackle these challenges, we design a model named Prototype Editing based Summary Generator (PESG). PESG first learns summary patterns and prototype facts by analyzing the correlation between a prototype document and its summary. Prototype facts are then utilized to help extract facts from the input document. Next, an editing generator generates new summary based on the summary pattern or extracted facts. Finally, to address the second challenge, a fact checker is used to estimate mutual information between the input document and generated summary, providing an additional signal for the generator. Extensive experiments conducted on a large-scale real-world text summarization dataset show that PESG achieves the state-of-the-art performance in terms of both automatic metrics and human evaluations.
This work presents a new approach to unsupervised abstractive summarization based on maximizing a combination of coverage and fluency for a given length constraint. It introduces a novel method that encourages the inclusion of key terms from the orig
We propose a new length-controllable abstractive summarization model. Recent state-of-the-art abstractive summarization models based on encoder-decoder models generate only one summary per source text. However, controllable summarization, especially
Pre-trained language models have recently advanced abstractive summarization. These models are further fine-tuned on human-written references before summary generation in test time. In this work, we propose the first application of transductive learn
State-of-the-art abstractive summarization models generally rely on extensive labeled data, which lowers their generalization ability on domains where such data are not available. In this paper, we present a study of domain adaptation for the abstrac
We propose a new approach to generate multiple variants of the target summary with diverse content and varying lengths, then score and select admissible ones according to users needs. Abstractive summarizers trained on single reference summaries may