ﻻ يوجد ملخص باللغة العربية
We consider a Schrodinger operator with complex-valued potentials on the line. The operator has essential spectrum on the half-line plus eigenvalues (counted with algebraic multiplicity) in the complex plane without the positive half-line. We determine series of trace formulas. Here we have the new term: a singular measure, which is absent for real potentials. Moreover, we estimate of sum of Im part of eigenvalues plus singular measure in terms of the norm of potentials. The proof is based on classical results about the Hardy spaces.
The compression of the resolvent of a non-self-adjoint Schrodinger operator $-Delta+V$ onto a subdomain $Omegasubsetmathbb R^n$ is expressed in a Krein-Naimark type formula, where the Dirichlet realization on $Omega$, the Dirichlet-to-Neumann maps, a
We study the one-dimensional Schrodinger operators $$ S(q)u:=-u+q(x)u,quad uin mathrm{Dom}left(S(q)right), $$ with $1$-periodic real-valued singular potentials $q(x)in H_{operatorname{per}}^{-1}(mathbb{R},mathbb{R})$ on the Hilbert space $L_{2}left(m
We study the direct and inverse scattering problem for the one-dimensional Schrodinger equation with steplike potentials. We give necessary and sufficient conditions for the scattering data to correspond to a potential with prescribed smoothness and
We consider the Schrodinger operator $H_{eta W} = -Delta + eta W$, self-adjoint in $L^2({mathbb R}^d)$, $d geq 1$. Here $eta$ is a non constant almost periodic function, while $W$ decays slowly and regularly at infinity. We study the asymptotic behav
We prove sharp lower bounds on the spectral gap of 1-dimensional Schrodinger operators with Robin boundary conditions for each value of the Robin parameter. In particular, our lower bounds apply to single-well potentials with a centered transition po