ترغب بنشر مسار تعليمي؟ اضغط هنا

Modal frustration and periodicity breaking in artificial spin ice

231   0   0.0 ( 0 )
 نشر من قبل Robert Puttock
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here an artificial spin ice (ASI) lattice is introduced that exhibits unique Ising and non-Ising behavior under specific field switching protocols because of the inclusion of coupled nanomagnets into the unit cell. In the Ising regime, a magnetic switching mechanism that generates a uni- or bimodal distribution of states dependent on the alignment of the field is demonstrated with respect to the lattice unit cell. In addition, a method for generating a plethora of randomly distributed energy states across the lattice, consisting of Ising and Landau states, is investigated through magnetic force microscopy and micromagnetic modeling. We demonstrate that the dispersed energy distribution across the lattice is a result of the intrinsic design and can be finely tuned through control of the incident angle of a critical field. The present manuscript explores a complex frustrated environment beyond the 16-vertex Ising model for the development of novel logic-based technologies.



قيم البحث

اقرأ أيضاً

Artificial spin ice systems have opened experimental windows into a range of model magnetic systems through the control of interactions among nanomagnet moments. This control has previously been enabled by altering the nanomagnet size and the geometr y of their placement. Here we demonstrate that the interactions in artificial spin ice can be further controlled by including a soft ferromagnetic underlayer below the moments. Such a substrate also breaks the symmetry in the array when magnetized, introducing a directional component to the correlations. Using spatially resolved magneto-optical Kerr effect microscopy to image the demagnetized ground states, we show that the correlation of the demagnetized states depends on the direction of underlayer magnetization. Further, the relative interaction strength of nearest and next-nearest neighbors varies significantly with the array geometry. We exploit this feature to induce frustration in an inherently unfrustrated square lattice geometry, demonstrating new possibilities for effective geometries in two dimensional nanomagnetic systems.
Artificial spin ices are periodic arrangements of interacting nanomagnets successfully used to investigate emergent phenomena in the presence of geometric frustration. Recently, it has been shown that artificial spin ices can be used as building bloc ks for creating functional materials, such as magnonic crystals, and support a large number of programmable magnetic states. We investigate the magnetization dynamics in a system exhibiting anisotropic magnetostatic interactions owing to locally broken structural inversion symmetry. We find a rich spin-wave spectrum and investigate its evolution in an external magnetic field. We determine the evolution of individual modes, from building blocks up to larger arrays, highlighting the role of symmetry breaking in defining the mode profiles. Moreover, we demonstrate that the mode spectra exhibit signatures of long-range interactions in the system. These results contribute to the understanding of magnetization dynamics in spin ices beyond the kagome and square ice geometries and are relevant for the realization of reconfigurable magnonic crystals based on spin ices.
Geometric frustration emerges when local interaction energies in an ordered lattice structure cannot be simultaneously minimized, resulting in a large number of degenerate states. The numerous degenerate configurations may lead to practical applicati ons in microelectronics, such as data storage, memory and logic. However, it is difficult to achieve extensive degeneracy, especially in a two-dimensional system. Here, we showcase in-situ controllable geometric frustration with massive degeneracy in a two-dimensional flux quantum system. We create this in a superconducting thin film placed underneath a reconfigurable artificial-spin-ice structure. The tunable magnetic charges in the artificial-spin-ice strongly interact with the flux quanta in the superconductor, enabling the switching between frustrated and crystallized flux quanta states. The different states have measurable effects on the superconducting critical current profile, which can be reconfigured by precise selection of the spin ice magnetic state through application of an external magnetic field. We demonstrate the applicability of these effects by realizing a reprogrammable flux quanta diode. The tailoring of the energy landscape of interacting particles using artificial-spin-ices provides a new paradigm for the design of geometric frustration, which allows us to control new functionalities in other material systems, such as magnetic skyrmions, electrons/holes in two-dimensional materials and topological insulators, as well as colloids in soft materials.
Systems of interacting nanomagnets known as artificial spin ices are models for exotic behavior due to their accessibility to geometries and measurement modalities that are not available in natural materials. Despite being fundamentally composed of b inary moments, these systems often display collective phenomena associated with emergent higher-order frustration. We have studied the vertex-frustrated Santa Fe ice, examining its moment structure both after annealing near the ferromagnetic Curie point, and in a thermally dynamic state. We experimentally demonstrate the existence of a disordered string ground state, in which the magnetic structure can be understood through the topology of emergent strings of local excitations. We also show that the system can support a long-range-ordered ground state for certain ratios of local interactions. Both states are accessible via moment reversals only through topological surgery, i.e., the breaking of pairs of crossed strings and their reattachment in topologically inequivalent configurations. While we observe instances of topological surgery in our experimental data, such events are energetically suppressed, and we find that an apparent kinetic bottleneck associated with topological surgery precludes the system from achieving either ground state through local moment flips. Santa Fe ice thus represents an unusual instance of competition between topological complexity and ordering, suggesting analogous structures in the quantum realm.
The study of magnetic correlations in dipolar-coupled nanomagnet systems with synchrotron x-ray scattering provides a means to uncover emergent phenomena and exotic phases, in particular in systems with thermally active magnetic moments. From the dif fuse signal of soft x-ray resonant magnetic scattering, we have measured magnetic correlations in a highly dynamic artificial kagome spin ice with sub-70-nm Permalloy nanomagnets. On comparing experimental scattering patterns with Monte Carlo simulations based on a needle-dipole model, we conclude that kagome ice I phase correlations exist in our experimental system even in the presence of moment fluctuations, which is analogous to bulk spin ice and spin liquid behavior. In addition, we describe the emergence of quasi-pinch-points in the magnetic diffuse scattering in the kagome ice I phase. These quasi-pinch-points bear similarities to the fully developed pinch points with singularities of a magnetic Coulomb phase, and continually evolve into the latter on lowering the temperature. The possibility to measure magnetic diffuse scattering with soft x rays opens the way to study magnetic correlations in a variety of nanomagnetic systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا