ﻻ يوجد ملخص باللغة العربية
Accreting white dwarfs in binary systems known as cataclysmic variables (CVs) have in recent years been shown to produce radio flares during outbursts, qualitatively similar to those observed from neutron star and black hole X-ray binaries, but their ubiquity and energetic significance for the accretion flow has remained uncertain. We present new radio observations of the CV SS Cyg with Arcminute Microkelvin Imager Large Array, which show for the second time late-ouburst radio flaring, in April 2016. This flaring occurs during the optical flux decay phase, about ten days after the well-established early-time radio flaring. We infer that both the early- and late-outburst flares are a common feature of the radio outbursts of SS Cyg, albeit of variable amplitudes, and probably of all dwarf novae. We furthermore present new analysis of the physical conditions in the best-sampled late-outburst flare, from Feb 2016, which showed clear optical depth evolution. From this we can infer that the synchrotron-emitting plasma was expanding at about 1% of the speed of light, and at peak had a magnetic field of order 1 Gauss and total energy content > 10^{33} erg. While this result is independent of the geometry of the synchrotron-emitting region, the most likely origin is in a jet carrying away a significant amount of the available accretion power.
The connection between accretion and jet production in accreting white dwarf binary systems, especially dwarf novae, is not well understood. Radio wavelengths provide key insights into the mechanisms responsible for accelerating electrons, including
We report null results on a two year photometric search for outburst predictors in SS Cyg. Observations in Johnson V and Cousins I were obtained almost daily for multiple hours per night for two observing seasons. The accumulated data are put through
We present observations of rapid (sub-second) optical flux variability in V404 Cyg during its 2015 June outburst. Simultaneous three-band observations with the ULTRACAM fast imager on four nights show steep power spectra dominated by slow variations
Chandra HETG spectra of the prototypical dwarf novae SS Cyg and U Gem in quiescence and outburst are presented and discussed. When SS Cyg goes into outburst, it becomes dimmer in hard X-rays and displays a dramatic shift in its relative line strength
The black hole candidate, XTE J1752-223, was discovered in 2009 October when it entered an outburst. We obtained radio data from the Australia Telescope Compact Array for the duration of the ~9 month event. The lightcurves show that the radio emissio