ﻻ يوجد ملخص باللغة العربية
The nuclear modification factors ($R_{AA}$) of $pi^{pm}, p(bar p)$, and $d(bar d)$ with $|y|<0.5, p_T<20.0$~GeV/c in peripheral (40-60%) and central (0-5%) Pb-Pb collisions at $sqrt {s_{NN}}=2.76$ TeV have been studied using the parton and hadron cascade ({footnotesize PACIAE}) model plus the dynamically constrained phase space coalescence ({footnotesize DCPC}) model. It is found that the $R_{AA}$ of light (anti)nuclei ($d, bar d$) is similar to that of hadrons ($pi^pm, p, bar p$), and the $R_{AA}$ of antiparticles is the same as that of particles. The suppression of $R_{AA}$ at high-$p_T$ strongly depends on event centrality and mass of the particles, i.e., the central collision is more suppressed than the peripheral collision. Besides, the yield ratios and double ratios for different particle species in $pp$ and Pb-Pb collisions are discussed, respectively. It is observed that the yield ratios and double ratios of $d$ to $p$ and $p$ to $pi$ are similar to those of their anti-particles in three different collision systems, suggesting that the suppressions of matter ($pi^{+}, p, d$) and the corresponding antimatter ($pi^{-},bar{p},bar{d}$) are around the same level.
Elliptic flow in heavy-ion collisions is an important signature of a possible de-confinement transition from hadronic phase to partonic phase. In the present work, we use non-extensive statistics, which has been used for transverse momentum ($p_{rm T
A simple approach based on the separation of wounded nucleons in an A-A collision in two categories, those suffering single collisions - corona and the rest - core, estimated within a Glauber Monte-Carlo approach, explains the centrality dependence o
Separation of charges along the extreme magnetic field created in non-central relativistic heavy--ion collisions is predicted to be a signature of local parity violation in strong interactions. We report on results for charge dependent two particle a
The ALICE data on light flavor hadron production obtained in $p-Pb$ collisions at $sqrt{s_{NN}} $ = 5.02 TeV are studied in the thermal model using the canonical approach with exact strangeness conservation. The chemical freeze-out temperature is ind
The production of $Upsilon(nS)$ mesons ($n=1,2,3$) in $p$Pb and Pb$p$ collisions at a centre-of-mass energy per nucleon pair $sqrt{s_{NN}}=8.16$ TeV is measured by the LHCb experiment, using a data sample corresponding to an integrated luminosity of