Using Deep Learning to Localize Gravitational Wave Sources


الملخص بالإنكليزية

In this paper, we report on the construction of a deep Artificial Neural Network (ANN) to localize simulated gravitational wave signals in the sky with high accuracy. We have modelled the sky as a sphere and have considered cases where the sphere is divided into 18, 50, 128, 1024, 2048 and 4096 sectors. The sky direction of the gravitational wave source is estimated by classifying the signal into one of these sectors based on its right ascension and declination values for each of these cases. In order to do this, we have injected simulated binary black hole gravitational wave signals of component masses sampled uniformly between 30-80 solar mass into Gaussian noise and used the whitened strain values to obtain the input features for training our ANN. We input features such as the delays in arrival times, phase differences and amplitude ratios at each of the three detectors Hanford, Livingston and Virgo, from the raw time-domain strain values as well as from analytic

تحميل البحث