ﻻ يوجد ملخص باللغة العربية
Previously proposed quantum algorithms for solving linear systems of equations cannot be implemented in the near term due to the required circuit depth. Here, we propose a hybrid quantum-classical algorithm, called Variational Quantum Linear Solver (VQLS), for solving linear systems on near-term quantum computers. VQLS seeks to variationally prepare $|xrangle$ such that $A|xranglepropto|brangle$. We derive an operationally meaningful termination condition for VQLS that allows one to guarantee that a desired solution precision $epsilon$ is achieved. Specifically, we prove that $C geq epsilon^2 / kappa^2$, where $C$ is the VQLS cost function and $kappa$ is the condition number of $A$. We present efficient quantum circuits to estimate $C$, while providing evidence for the classical hardness of its estimation. Using Rigettis quantum computer, we successfully implement VQLS up to a problem size of $1024times1024$. Finally, we numerically solve non-trivial problems of size up to $2^{50}times2^{50}$. For the specific examples that we consider, we heuristically find that the time complexity of VQLS scales efficiently in $epsilon$, $kappa$, and the system size $N$.
Variational quantum algorithms have found success in the NISQ era owing to their hybrid quantum-classical approach which mitigate the problems of noise in quantum computers. In our study we introduce the dynamic ansatz in the Variational Quantum Line
Variational Hybrid Quantum Classical Algorithms (VHQCAs) are a class of quantum algorithms intended to run on noisy intermediate-scale quantum (NISQ) devices. These algorithms employ a parameterized quantum circuit (ansatz) and a quantum-classical fe
Recently a new class of quantum algorithms that are based on the quantum computation of the connected moment expansion has been reported to find the ground and excited state energies. In particular, the Peeters-Devreese-Soldatov (PDS) formulation is
We propose a realistic hybrid classical-quantum linear solver to solve systems of linear equations of a specific type, and demonstrate its feasibility using Qiskit on IBM Q systems. This algorithm makes use of quantum random walk that runs in $mathca
Recently, an adaptive variational algorithm termed Adaptive Derivative-Assembled Pseudo-Trotter ansatz Variational Quantum Eigensolver (ADAPT-VQE) has been proposed by Grimsley et al. (Nat. Commun. 10, 3007) while the number of measurements required