ترغب بنشر مسار تعليمي؟ اضغط هنا

Informationally restricted quantum correlations

178   0   0.0 ( 0 )
 نشر من قبل Armin Tavakoli
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum communication leads to strong correlations, that can outperform classical ones. Complementary to previous works in this area, we investigate correlations in prepare-and-measure scenarios assuming a bound on the information content of the quantum communication, rather than on its Hilbert-space dimension. Specifically, we explore the extent of classical and quantum correlations given an upper bound on the one-shot accessible information. We provide a characterisation of the set of classical correlations and show that quantum correlations are stronger than classical ones. We also show that limiting information rather than dimension leads to stronger quantum correlations. Moreover, we present device-independent tests for placing lower bounds on the information given observed correlations. Finally, we show that quantum communication carrying $log d$ bits of information is at least as strong a resource as $d$-dimensional classical communication assisted by pre-shared entanglement.



قيم البحث

اقرأ أيضاً

In the present work, we suggest an approach for describing dynamics of finite-dimensional quantum systems in terms of pseudostochastic maps acting on probability distributions, which are obtained via minimal informationally complete quantum measureme nts. The suggested method for probability representation of quantum dynamics preserves the tensor product structure, which makes it favourable for the analysis of multi-qubit systems. A key advantage of the suggested approach is that minimal informationally complete positive operator-valued measures (MIC-POVMs) are easier to construct in comparison with their symmetr
It is well-known that in a Bell experiment, the observed correlation between measurement outcomes -- as predicted by quantum theory -- can be stronger than that allowed by local causality, yet not fully constrained by the principle of relativistic ca usality. In practice, the characterization of the set Q of quantum correlations is often carried out through a converging hierarchy of outer approximations. On the other hand, some subsets of Q arising from additional constraints [e.g., originating from quantum states having positive-partial-transposition (PPT) or being finite-dimensional maximally entangled] turn out to be also amenable to similar numerical characterizations. How then, at a quantitative level, are all these naturally restricted subsets of nonsignaling correlations different? Here, we consider several bipartite Bell scenarios and numerically estimate their volume relative to that of the set of nonsignaling correlations. Among others, our findings allow us to (1) gain insight on (i) the effectiveness of the so-called Q1 and the almost quantum set in approximating Q, (ii) the rate of convergence among the first few levels of the aforementioned outer approximations, (iii) the typicality of the phenomenon of more nonlocality with less entanglement, and (2) identify a Bell scenario whose Bell violation by PPT states might be experimentally viable.
Minimal informationally complete positive operator-valued measures (MIC-POVMs) are special kinds of measurement in quantum theory in which the statistics of their $d^2$-outcomes are enough to reconstruct any $d$-dimensional quantum state. For this re ason, MIC-POVMs are referred to as standard measurements for quantum information. Here, we report an experiment with entangled photon pairs that certifies, for what we believe is the first time, a MIC-POVM for qubits following a device-independent protocol (i.e., modeling the state preparation and the measurement devices as black boxes, and using only the statistics of the inputs and outputs). Our certification is achieved under the assumption of freedom of choice, no communication, and fair sampling.
Symmetric informationally complete measurements (SICs) are elegant, celebrated and broadly useful discrete structures in Hilbert space. We introduce a more sophisticated discrete structure compounded by several SICs. A SIC-compound is defined to be a collection of $d^3$ vectors in $d$-dimensional Hilbert space that can be partitioned in two different ways: into $d$ SICs and into $d^2$ orthonormal bases. While a priori their existence may appear unlikely when $d>2$, we surprisingly answer it in the positive through an explicit construction for $d=4$. Remarkably this SIC-compound admits a close relation to mutually unbiased bases, as is revealed through quantum state discrimination. Going beyond fundamental considerations, we leverage these exotic properties to construct a protocol for quantum key distribution and analyze its security under general eavesdropping attacks. We show that SIC-compounds enable secure key generation in the presence of errors that are large enough to prevent the success of the generalisation of the six-state protocol.
57 - Jun Li , Lin Chen 2021
We propose entanglement criteria for multipartite systems via symmetric informationally complete (SIC) measurement and general symmetric informationally complete (GSIC) measurement. We apply these criteria to detect entanglement of multipartite state s, such as the convex of Bell states, entangled states mixed with white noise. It is shown that these criteria are stronger than some existing ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا