ﻻ يوجد ملخص باللغة العربية
We discuss the optical properties of the solar gravitational lens (SGL). We estimate the power of the EM field received by an imaging telescope. Studying the behavior of the EM field at the photometric detector, we develop expressions that describe the received power from a point source as well as from an extended resolved source. We model the source as a disk with uniform surface brightness and study the contribution of blur to a particular image pixel. To describe this process, we develop expressions describing the power received from the directly imaged region of the exoplanet, from the rest of the exoplanet and also the power for off-image pointing. We study the SGLs amplification and its angular resolution in the case of observing an extended source with a modest size telescope. The results can be applied to direct imaging of exoplanets using the SGL.
The remarkable optical properties of the solar gravitational lens (SGL) include major brightness amplification (~1e11 at wavelength of 1 um) and extreme angular resolution (~1e-10 arcsec) in a narrow field of view. A mission to the SGL carrying a mod
We report on the initial results obtained with an image convolution/deconvolution computer code that we developed and used to study the image formation capabilities of the solar gravitational lens (SGL). Although the SGL of a spherical Sun creates a
We investigate the optical properties of the solar gravitational lens (SGL) with respect to an extended source located at a large but finite distance from the Sun. The static, spherically symmetric gravitational field of the Sun is modeled within the
We study image formation with the solar gravitational lens (SGL). We consider a point source that is positioned at a large but finite distance from the Sun. We assume that an optical telescope is positioned in the image plane, in the focal region of
We study the image formation process with the solar gravitational lens (SGL) in the case of an extended, resolved source. An imaging telescope, modeled as a convex lens, is positioned within the image cylinder formed by the light received from the so