ترغب بنشر مسار تعليمي؟ اضغط هنا

The Surface Distributions of the Production of the Major Volatile Species, H2O, CO2, CO and O2, from the Nucleus of Comet 67P/Churyumov-Gerasimenko throughout the Rosetta Mission as Measured by the ROSINA Double Focusing Mass Spectrometer

120   0   0.0 ( 0 )
 نشر من قبل Michael Combi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) suite of instruments operated throughout the over two years of the Rosetta mission operations in the vicinity of comet 67P/Churyumov-Gerasimenko. It measured gas densities and composition throughout the comets atmosphere, or coma. Here we present two-years worth of measurements of the relative densities of the four major volatile species in the coma of the comet, H2O. CO2, CO and O2, by one of the ROSINA sub-systems called the Double Focusing Mass Spectrometer (DFMS). The absolute total gas densities were provided by the Comet Pressure Sensor (COPS), another ROSINA sub-system. DFMS is a very high mass resolution and high sensitivity mass spectrometer able to resolve at a tiny fraction of an atomic mass unit. We have analyzed the combined DFMS and COPS measurements using an inversion scheme based on spherical harmonics that solves for the distribution of potential surface activity of each species as the comet rotates, changing solar illumination, over short intervals and as the comet changes distance from the sun and orientation of its spin axis over long time intervals. We also use the surface boundary conditions derived from the inversion scheme to simulate the whole coma with our fully kinetic Direct Simulation Monte Carlo model and calculate the production rates of the four major species throughout the mission. We compare the derived production rates with revised remote sensing observations by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) as well as with published observations from the Microwave Instrument for the Rosetta Orbiter (MIRO). Finally we use the variation of the surface production of the major species to calculate the total mass loss over the mission and, for different estimates of the dust/gas ratio, calculate the variation of surface loss over the nucleus.



قيم البحث

اقرأ أيضاً

The Rosetta mission of the European Space Agency has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014 and is now in its escort phase. A large complement of scientific experiments designed to complete the most detailed study o f a comet ever attempted are onboard Rosetta. We present results for the photometric and spectrophotometric properties of the nucleus of 67P derived from the OSIRIS imaging system, which consists of a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). The disk-averaged phase function of the nucleus of 67P shows a strong opposition surge with a G parameter value of -0.13$pm$0.01 in the HG system formalism and an absolute magnitude $H_v(1,1,0)$ = 15.74$pm$0.02 mag. The integrated spectrophotometry in 20 filters covering the 250-1000 nm wavelength range shows a red spectral behavior, without clear absorption bands except for a potential absorption centered at $sim$ 290 nm that is possibly due to SO$_2$ ice. The nucleus shows strong phase reddening, with disk-averaged spectral slopes increasing from 11%/(100 nm) to 16%/(100 nm) in the 1.3$^{circ}$--54$^{circ}$ phase angle range. The geometric albedo of the comet is 6.5$pm$0.2% at 649 nm, with local variations of up to $sim$ 16% in the Hapi region. From the disk-resolved images we computed the spectral slope together with local spectrophotometry and identified three distinct groups of regions (blue, moderately red, and red). The Hapi region is the brightest, the bluest in term of spectral slope, and the most active surface on the comet. Local spectrophotometry shows an enhancement of the flux in the 700-750 nm that is associated with coma emissions.
Comets contain abundant amounts of organic and inorganic species. Many of the volatile molecules in comets have also been observed in the interstellar medium and some of them even with similar relative abundances, indicating formation under similar c onditions or even sharing a common chemical pathway. There is a growing amount of evidence that suggests comets inherit and preserve substantial fractions of materials inherited from previous evolutionary phases, potentially indicating that commonplace processes occurred throughout comet-forming regions. Through impacts, part of this material has also been transported to the inner planetary system, including the terrestrial planets. While comets have been ruled out as a major contributor to terrestrial ocean water, substantial delivery of volatile species to the Earths atmosphere, and as a consequence also organic molecules to its biomass, appears more likely. Comets contain many species of pre-biotic relevance and molecules that are related to biological processes on Earth, and have hence been proposed as potential indicators for the presence of biological processes in the search of extraterrestrial life. While the delivery of cometary material to Earth may have played a crucial role in the emergence of life, the presence of such alleged biosignature molecules in the abiotical environment of comets complicates the detection of life elsewhere in the universe.
We present a summary of the campaign of remote observations that supported the European Space Agencys Rosetta mission. Telescopes across the globe (and in space) followed comet 67P/Churyumov-Gerasimenko from before Rosettas arrival until nearly the e nd of mission in September 2016. These provided essential data for mission planning, large-scale context information for the coma and tails beyond the spacecraft, and a way to directly compare 67P with other comets. The observations revealed 67P to be a relatively `well behaved comet, typical of Jupiter family comets and with activity patterns that repeat from orbit-to-orbit. Comparison between this large collection of telescopic observations and the in situ results from Rosetta will allow us to better understand comet coma chemistry and structure. This work is just beginning as the mission ends -- in this paper we present a summary of the ground-based observations and early results, and point to many questions that will be addressed in future studies.
We present observations of comet 67P/Churyumov-Gerasimenko acquired in support of the $Rosetta$ mission. We obtained usable data on 68 nights from 2014 September until 2016 May, with data acquired regularly whenever the comet was observable. We colle cted an extensive set of near-IR $J$, $H$, and $Ks$ data throughout the apparition plus visible-light images in $g$, $r$, $i$, and $z$ when the comet was fainter. We also obtained broadband $R$ and narrowband $CN$ filter observations when the comet was brightest using telescopes at Lowell Observatory. The appearance was dominated by a central condensation and the tail until 2015 June. From 2015 August onwards there were clear asymmetries in the coma, which enhancements revealed to be due to the presence of up to three features (i.e., jets). The features were similar in all broadband filters; $CN$ images did not show these features but were instead broadly enhanced in the southeastern hemisphere. Modeling using the parameters from Vincent et al. (2013) replicated the dust morphology reasonably well, indicating that the pole orientation and locations of active areas have been relatively unchanged over at least the last three apparitions. The dust production, as measured by $A(0^{circ})f{rho}$ peaked $sim$30 days after perihelion and was consistent with predictions from previous apparitions. $A(0^{circ})f{rho}$ as a function of heliocentric distance was well fit by a power-law with slope $-$4.2 from 35-120 days post-perihelion. We detected photometric evidence of apparent outbursts on 2015 August 22 and 2015 September 19, although neither was discernible morphologically in this dataset.
159 - E. Behar , H. Nilsson , P. Henri 2018
The first 1000 km of the ion tail of comet 67P/Churyumov-Gerasimenko were explored by the European Rosetta spacecraft, 2.7 au away from the Sun. We characterised the dynamics of both the solar wind and the cometary ions on the night-side of the comet s atmosphere. We analysed in situ ion and magnetic field measurements and compared the data to a semi-analytical model. The cometary ions are observed flowing close to radially away from the nucleus during the entire excursion. The solar wind is deflected by its interaction with the new-born cometary ions. Two concentric regions appear, an inner region dominated by the expanding cometary ions and an outer region dominated by the solar wind particles. The single night-side excursion operated by Rosetta revealed that the near radial flow of the cometary ions can be explained by the combined action of three different electric field components, resulting from the ion motion, the electron pressure gradients, and the magnetic field draping. The observed solar wind deflection is governed mostly by the motional electric field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا