ﻻ يوجد ملخص باللغة العربية
Left-right symmetry at high energy scales is a well-motivated extension of the Standard Model. In this paper we consider a typical minimal scenario in which it gets spontaneously broken by scalar triplets. Such a realization has been scrutinized over the past few decades chiefly in the context of collider studies. In this work we take a complementary approach and investigate whether the model can be probed via the search for a stochastic gravitational wave background induced by the phase transition in which $SU(3)_C times SU(2)_L times SU(2)_R times U(1)_{B-L}$ is broken down to the Standard Model gauge symmetry group. A prerequisite for gravitational wave production in this context is a first-order phase transition, the occurrence of which we find in a significant portion of the parameter space. Although the produced gravitational waves are typically too weak for a discovery at any current or future detector, upon investigating correlations between all relevant terms in the scalar potential, we have identified values of parameters leading to observable signals. This indicates that, given a certain moderate fine-tuning, the minimal left-right symmetric model with scalar triplets features another powerful probe which can lead to either novel constraints or remarkable discoveries in the near future. Let us note that some of our results, such as the full set of thermal masses, have to the best of our knowledge not been presented before and might be useful for future studies, in particular in the context of electroweak baryogenesis.
We consider the electroweak phase transition in the conformal extension of the standard model known as SU(2)cSM. Apart from the standard model particles, this model contains an additional scalar and gauge field that are both charged under the hidden
In an unconventional realization of left-right symmetry, the particle corresponding to the left-handed neutrino nu_L (with SU(2)_L interactions) in the right-handed sector, call it n_R (with SU(2)_R interactions), is not its Dirac mass partner, but a
We derive analytic necessary and sufficient conditions for the vacuum stability of the left-right symmetric model by using the concepts of copositivity and gauge orbit spaces. We also derive the conditions sufficient for successful symmetry breaking
We consider the possibility of probing left-right symmetric model (LRSM) via cosmic microwave background (CMB). We adopt the minimal LRSM with Higgs doublets, also known as the doublet left-right model (DLRM), where all fermions including the neutrin
The left-right symmetric model (LRSM) is a well-motivated framework to restore parity and implement seesaw mechanisms for the tiny neutrino masses at or above the TeV-scale, and has a very rich phenomenology at both the high-energy and high-precision