Entanglement spectrum and entropy in topological non-Hermitian systems and non-unitary conformal field theories


الملخص بالإنكليزية

We propose a method of computing and studying entanglement quantities in non-Hermitian systems by use of a biorthogonal basis. We find that the entanglement spectrum characterizes the topological properties in terms of the existence of mid-gap states in the non-Hermitian Su-Schrieffer-Heeger (SSH) model with parity and time-reversal symmetry (PT symmetry) and the non-Hermitian Chern insulators. In addition, we find that at a critical point in the PT symmetric SSH model, the entanglement entropy has a logarithmic scaling with corresponding central charge $c=-2$. This critical point then is a free-fermion lattice realization of the non-unitary conformal field theory.

تحميل البحث