ﻻ يوجد ملخص باللغة العربية
We present a fingerprint-like method to analyze material defects after energetic particle irradiation by computing a rotation invariant descriptor vector for each atom of a given sample. For ordered solids this new method is easy to use, does not require extreme computational resources, and is largely independent of the sample material and sample temperature. As illustration we applied the method to molecular dynamics simulations of deuterated and pristine tungsten lattices at 300 K using a primary knock-on atom (PKA) of 1 keV with different velocity directions to emulate a neutron bombardment process. The number of W atoms, that are affected after the collision cascade, have been quantified with the presented approach. At first atoms at regular lattice positions as well as common defect types like interstitials and vacancies have been identified using precomputed descriptor vectors. A principal component analysis (PCA) is used to identify previously overlooked defect types and to derive the corresponding local atomic structure. A comparison of the irradiation effects for deuterated and pristine tungsten samples revealed that deuterated samples exhibit consistently more defects than pristine ones.
We propose a method to decompose the total energy of a supercell containing defects into contributions of individual atoms, using the energy density formalism within density functional theory. The spatial energy density is unique up to a gauge transf
Research on topological physics of phonons has attracted enormous interest but demands appropriate model materials. Our {it ab initio} calculations identify silicon as an ideal candidate material containing extraordinarily rich topological phonon sta
Defects influence the properties and functionality of all crystalline materials. For instance, point defects participate in electronic (e.g. carrier generation and recombination) and optical (e.g. absorption and emission) processes critical to solar
In this work, we discuss use of machine learning techniques for rapid prediction of detonation properties including explosive energy, detonation velocity, and detonation pressure. Further, analysis is applied to individual molecules in order to explo
This work studies the influence of microstructures and crystalline defects on the superconductivity of MgB2, with the objective to improve its flux pinning. A MgB2 sample pellet that was hot isostatic pressed (HIPed) was found to have significantly i