Endomorphisms of ordinary superelliptic jacobians


الملخص بالإنكليزية

Let $K$ be a field of prime characteristic $p$, $n>4 $ an integer, $f(x)$ an irreducible polynomial over $K$ of degree $n$, whose Galois group is either the full symmetric group $S_n$ or the alternating group $A_n$. Let $l$ be an odd prime different from $p$, $Z[zeta_l]$ the ring of integers in the $l$th cyclotomic field, $C_{f,l}:y^l=f(x)$ the corresponding superelliptic curve and $J(C_{f,l})$ its jacobian. We prove that the ring of all endomorphisms of $J(C_{f,l})$ coincides with $Z[zeta_l]$ if $J(C_{f,l})$ is an ordinary abelian variety and $(l,n) e (5,5)$.

تحميل البحث