ﻻ يوجد ملخص باللغة العربية
Reasonable spacetimes are non-compact and of dimension larger than two. We show that these spacetimes are globally hyperbolic if and only if the causal diamonds are compact. That is, there is no need to impose the causality condition, as it can be deduced. We also improve the definition of global hyperbolicity for the non-regular theory (non $C^{1,1}$ metric) and for general cone structures by proving the following convenient characterization for upper semi-continuous cone distributions: causality and the causally convex hull of compact sets is compact. In this case the causality condition cannot be dropped, independently of the spacetime dimension. Similar results are obtained for causal simplicity.
Globally hyperbolic spacetimes with timelike boundary $(overline{M} = M cup partial M, g)$ are the natural class of spacetimes where regular boundary conditions (eventually asymptotic, if $overline{M}$ is obtained by means of a conformal embedding) c
In a recent work the first named author, Levitin and Vassiliev have constructed the wave propagator on a closed Riemannian manifold $M$ as a single oscillatory integral global both in space and in time with a distinguished complex-valued phase functi
The folk questions in Lorentzian Geometry, which concerns the smoothness of time functions and slicings by Cauchy hypersurfaces, are solved by giving simple proofs of: (a) any globally hyperbolic spacetime $(M,g)$ admits a smooth time function $tau$
Some recent results obtained by the author and collaborators about QFT in asymptotically flat spacetimes at null infinity are summarized and reviewed. In particular it is focused on the physical properties of ground states in the bulk induced by the BMS-invariant state defined at null infinity.
We consider pseudoconvexity properties in Lorentzian and Riemannian manifolds and their relationship in static spacetimes. We provide an example of a causally continuous and maximal null pseudoconvex spacetime that fails to be causally simple. Its Ri