ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate different secrecy energy efficiency (SEE) optimization problems in a multiple-input single-output underlay cognitive radio (CR) network in the presence of an energy harvesting receiver. In particular, these energy efficient designs are developed with different assumptions of channels state information (CSI) at the transmitter, namely perfect CSI, statistical CSI and imperfect CSI with bounded channel uncertainties. In particular, the overarching objective here is to design a beamforming technique maximizing the SEE while satisfying all relevant constraints linked to interference and harvested energy between transmitters and receivers. We show that the original problems are non-convex and their solutions are intractable. By using a number of techniques, such as non-linear fractional programming and difference of concave (DC) functions, we reformulate the original problems so as to render them tractable. We then combine these techniques with the Dinkelbachs algorithm to derive iterative algorithms to determine relevant beamforming vectors which lead to the SEE maximization. In doing this, we investigate the robust design with ellipsoidal bounded channel uncertainties, by mapping the original problem into a sequence of semidefinite programs by employing the semidefinite relaxation, non-linear fractional programming and S-procedure. Furthermore, we show that the maximum SEE can be achieved through a search algorithm in the single dimensional space. Numerical results, when compared with those obtained with existing techniques in the literature, show the effectiveness of the proposed designs for SEE maximization.
This paper investigates the application of intelligent reflecting surface (IRS) in an underlay cognitive radio network (CRN), where a multi-antenna cognitive base station (CBS) utilizes spectrum assigned to the primary user (PU) to communicate with a
Wireless energy harvesting is regarded as a promising energy supply alternative for energy-constrained wireless networks. In this paper, a new wireless energy harvesting protocol is proposed for an underlay cognitive relay network with multiple prima
This paper investigates a machine learning-based power allocation design for secure transmission in a cognitive radio (CR) network. In particular, a neural network (NN)-based approach is proposed to maximize the secrecy rate of the secondary receiver
In this paper, we consider multiuser multiple-input single-output (MISO) interference channel where the received signal is divided into two parts for information decoding and energy harvesting (EH), respectively. The transmit beamforming vectors and
The paper investigates the problem of maximizing expected sum throughput in a fading multiple access cognitive radio network when secondary user (SU) transmitters have energy harvesting capability, and perform cooperative spectrum sensing. We formula