ﻻ يوجد ملخص باللغة العربية
We investigate the topological properties of a Kitaev chain in the shape of a legged-ring, which is here referred to as Kitaev tie. We demonstrate that the Kitaev tie is a frustrated system in which topological properties are determined by the position of the movable bond (the tie knot). We determine the phase diagram of the system as a function of the knot position and chemical potential, also discussing the effects of topological frustration. The stability of the topological Kitaev tie is addressed by a careful analysis of the system free energy.
Topological phases of matter that depend for their existence on interactions are fundamentally interesting and potentially useful as platforms for future quantum computers. Despite the multitude of theoretical proposals the only interaction-enabled t
In this work, we study how, with the aid of impurity engineering, two-dimensional $p$-wave superconductors can be employed as a platform for one-dimensional topological phases. We discover that, while chiral and helical parent states themselves are t
Quantum anomalous Hall insulator (QAH)/$s$-wave superconductor (SC) hybrid systems are known to be an ideal platform for realizing two-dimensional topological superconductors with chiral Majorana edge modes. In this paper we study QAH/unconventional
Floquet Majorana edge modes capture the topological features of periodically driven superconductors. We present a Kitaev chain with multiple time periodic driving and demonstrate how the avoidance of bands crossing is altered, which gives rise to new
We show that a conical magnetic field ${bf H}=(1,1,1)H$ can be used to tune the topological order and hence anyon excitations of the $mathrm{Z_2}$ quantum spin liquid in the isotropic antiferromagnetic Kitaev model. A novel topological order, feature