ترغب بنشر مسار تعليمي؟ اضغط هنا

Applying machine learning optimization methods to the production of a quantum gas

79   0   0.0 ( 0 )
 نشر من قبل Adam Barker
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply three machine learning strategies to optimize the atomic cooling processes utilized in the production of a Bose-Einstein condensate (BEC). For the first time, we optimize both laser cooling and evaporative cooling mechanisms simultaneously. We present the results of an evolutionary optimization method (Differential Evolution), a method based on non-parametric inference (Gaussian Process regression) and a gradient-based function approximator (Artificial Neural Network). Online optimization is performed using no prior knowledge of the apparatus, and the learner succeeds in creating a BEC from completely randomized initial parameters. Optimizing these cooling processes results in a factor of four increase in BEC atom number compared to our manually-optimized parameters. This automated approach can maintain close-to-optimal performance in long-term operation. Furthermore, we show that machine learning techniques can be used to identify the main sources of instability within the apparatus.



قيم البحث

اقرأ أيضاً

86 - Ronen M. Kroeze , Yudan Guo , 2019
We realize the dynamical 1D spin-orbit-coupling (SOC) of a Bose-Einstein condensate confined within an optical cavity. The SOC emerges through spin-correlated momentum impulses delivered to the atoms via Raman transitions. These are effected by class ical pump fields acting in concert with the quantum dynamical cavity field. Above a critical pump power, the Raman coupling emerges as the atoms superradiantly populate the cavity mode with photons. Concomitantly, these photons cause a back-action onto the atoms, forcing them to order their spin-spatial state. This SOC-inducing superradiant Dicke phase transition results in a spinor-helix polariton condensate. We observe emergent SOC through spin-resolved atomic momentum imaging. Dynamical SOC in quantum gas cavity QED, and the extension to dynamical gauge fields, may enable the creation of Meissner-like effects, topological superfluids, and exotic quantum Hall states in coupled light-matter systems.
176 - Marlon Nuske , Eite Tiesinga , 2014
We optimize a collision-induced cooling process for ultracold atoms in the nondegenerate regime. It makes use of a Feshbach resonance, instead of rf radiation in evaporative cooling, to selectively expel hot atoms from a trap. Using functional minimi zation we analytically show that for the optimal cooling process the resonance energy must be tuned such that it linearly follows the temperature. Here, optimal cooling is defined as maximizing the phase-space density after a fixed cooling duration. The analytical results are confirmed by numerical Monte-Carlo simulations. In order to simulate more realistic experimental conditions, we show that background losses do not change our conclusions, while additional non-resonant two-body losses make a lower initial resonance energy with non-linear dependence on temperature preferable.
Phasonic degrees of freedom are unique to quasiperiodic structures, and play a central role in poorly-understood properties of quasicrystals from excitation spectra to wavefunction statistics to electronic transport. However, phasons are challenging to access dynamically in the solid state due to their complex long-range character and the effects of disorder and strain. We report phasonic spectroscopy of a quantum gas in a one-dimensional quasicrystalline optical lattice. We observe that strong phasonic driving produces a nonperturbative high-harmonic plateau strikingly different from the effects of standard dipolar driving. Tuning the potential from crystalline to quasicrystalline, we identify spectroscopic signatures of quasiperiodicity and interactions and map the emergence of a multifractal energy spectrum, opening a path to direct imaging of the Hofstadter butterfly.
We report on an efficient production scheme for a large quantum degenerate sample of fermionic lithium. The approach is based on our previous work on narrow-line $ 2S_{1/2}rightarrow 3P_{3/2} $ laser cooling resulting in a high phase-space density of up to $3times10^{-4}$. This allows utilizing a large volume crossed optical dipole trap with a total power of $45,textrm{W}$, leading to high loading efficiency and $8times10^6$ trapped atoms. The same optical trapping configuration is used for rapid adiabatic transport over a distance of $25,textrm{cm}$ in $0.9,textrm{s}$, and subsequent evaporative cooling. With optimized evaporation we achieve a degenerate Fermi gas with $1.7times 10^{6}$ atoms at a temperature of $60 , textrm{nK}$, corresponding to $T/T_{text{F}}=0.16left(2 right)$. Furthermore, the performance is demonstrated by evaporation near a broad Feshbach resonance creating a molecular Bose-Einstein condensate of $3times10^5$ lithium dimers.
Quantum fluctuations are the origin of genuine quantum many-body effects, and can be neglected in classical mean-field phenomena. Here we report on the observation of stable quantum droplets containing $sim$ 800 atoms which are expected to collapse a t the mean-field level due to the essentially attractive interaction. By systematic measurements on individual droplets we demonstrate quantitatively that quantum fluctuations stabilize them against the mean-field collapse. We observe in addition interference of several droplets indicating that this stable many-body state is phase coherent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا