ﻻ يوجد ملخص باللغة العربية
Size dependent hardness has long been reported in nanosized indentations, however the corresponding explanation is still in exploration. In this paper, we examine the influence of surface energy on the hardness of materials under spherical indentation. To evaluate the ability of materials to resist indentation, a yield hardness is defined here as the contact pressure at the inception of material yield. It is found that this defined hardness is an intrinsic material property depending only on the yield strength and Poisson ratio in conventional continuum mechanics. Then, the impact of surface energy on the yield hardness is analyzed through finite element simulations. By using the dimensional analysis, the dependences of the yield hardness and critical indent depth at yield initiation on surface energy have been achieved. When the yield strength is comparable to the ratio of surface energy density to indenter radius, surface energy will alter the yield hardness and the critical indent depth. As the size of indenter decreases to nanoscale, both the yield hardness and the indent depth will increase significantly. This study provides a possible clarification to the size dependence of hardness and a potential approach to measure the yield strength and surface energy of solids through nanosized indentations.
To enable an exploration of the initiation mechanism of nanosecond laser damage on a potassium dihydrogen phosphate (KDP) surface, a defect-assisted energy deposition model is developed that involves light intensity enhancement and a sub-band gap ene
We apply the Lifshitz theory of dispersion forces to find a contribution to the free energy of peptide films which is caused by the zero-point and thermal fluctuations of the electromagnetic field. For this purpose, using available information about
The microstructure, mechanical properties and thermal stability of AlTiN and AlTiBN coatings grown by reactive high-power impulse magnetron sputtering (HiPIMS) have been analyzed as a function of Al/(Al+Ti) ratio, x, between 0.5 and 0.8. The coatings
The rising need for hybrid physical platforms has triggered a renewed interest for the development of agile radio-frequency phononic circuits with complex functionalities. The combination of travelling waves with resonant mechanical elements appears
Autler-Townes Splitting (ATS) and Electromagnetically Induced Transparency (EIT) are similar phenomena but distinct in nature. They have been widely discussed and distinguished by employing the Akaike information criterion (AIC). However, such work i