ترغب بنشر مسار تعليمي؟ اضغط هنا

Sound Localization and Separation in Three-dimensional Space Using a Single Microphone with a Metamaterial Enclosure

70   0   0.0 ( 0 )
 نشر من قبل Xuecong Sun
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Conventional approaches to sound localization and separation are based on microphone arrays in artificial systems. Inspired by the selective perception of human auditory system, we design a multi-source listening system which can separate simultaneous overlapping sounds and localize the sound sources in three-dimensional space, using only a single microphone with a metamaterial enclosure. The enclosure modifies the frequency response of the microphone in a direction-dependent way by giving each direction a signature. Thus, the information about the location and audio content of sound sources can be experimentally reconstructed from the modulated mixed signals using compressive sensing algorithm. Owing to the low computational complexity of the proposed reconstruction algorithm, the designed system can also be applied in source identification and tracking. The effectiveness of the system in multiple real scenarios has been proved through multiple random listening tests. The proposed metamaterial-based single-sensor listening system opens a new way of sound localization and separation, which can be applied to intelligent scene monitoring and robot audition.



قيم البحث

اقرأ أيضاً

Performing sound event detection on real-world recordings often implies dealing with overlapping target sound events and non-target sounds, also referred to as interference or noise. Until now these problems were mainly tackled at the classifier leve l. We propose to use sound separation as a pre-processing for sound event detection. In this paper we start from a sound separation model trained on the Free Universal Sound Separation dataset and the DCASE 2020 task 4 sound event detection baseline. We explore different methods to combine separated sound sources and the original mixture within the sound event detection. Furthermore, we investigate the impact of adapting the sound separation model to the sound event detection data on both the sound separation and the sound event detection.
We propose a benchmark of state-of-the-art sound event detection systems (SED). We designed synthetic evaluation sets to focus on specific sound event detection challenges. We analyze the performance of the submissions to DCASE 2021 task 4 depending on time related modifications (time position of an event and length of clips) and we study the impact of non-target sound events and reverberation. We show that the localization in time of sound events is still a problem for SED systems. We also show that reverberation and non-target sound events are severely degrading the performance of the SED systems. In the latter case, sound separation seems like a promising solution.
92 - Yuxin Huang , Liwei Lin , Shuo Ma 2020
In this paper, we describe in detail our systems for DCASE 2020 Task 4. The systems are based on the 1st-place system of DCASE 2019 Task 4, which adopts weakly-supervised framework with an attention-based embedding-level pooling module and a semi-sup ervised learning approach named guided learning. This year, we incorporate multi-branch learning (MBL) into the original system to further improve its performance. MBL uses different branches with different pooling strategies (including instance-level and embedding-level strategies) and different pooling modules (including attention pooling, global max pooling or global average pooling modules), which share the same feature encoder of the model. Therefore, multiple branches pursuing different purposes and focusing on different characteristics of the data can help the feature encoder model the feature space better and avoid over-fitting. To better exploit the strongly-labeled synthetic data, inspired by multi-task learning, we also employ a sound event detection branch. To combine sound separation (SS) with sound event detection (SED), we fuse the results of SED systems with SS-SED systems which are trained using separated sound output by an SS system. The experimental results prove that MBL can improve the model performance and using SS has great potential to improve the performance of SED ensemble system.
Identification and localization of sounds are both integral parts of computational auditory scene analysis. Although each can be solved separately, the goal of forming coherent auditory objects and achieving a comprehensive spatial scene understandin g suggests pursuing a joint solution of the two problems. This work presents an approach that robustly binds localization with the detection of sound events in a binaural robotic system. Both tasks are joined through the use of spatial stream segregation which produces probabilistic time-frequency masks for individual sources attributable to separate locations, enabling segregated sound event detection operating on these streams. We use simulations of a comprehensive suite of test scenes with multiple co-occurring sound sources, and propose performance measures for systematic investigation of the impact of scene complexity on this segregated detection of sound types. Analyzing the effect of spatial scene arrangement, we show how a robot could facilitate high performance through optimal head rotation. Furthermore, we investigate the performance of segregated detection given possible localization error as well as error in the estimation of number of active sources. Our analysis demonstrates that the proposed approach is an effective method to obtain joint sound event location and type information under a wide range of conditions.
In this paper, we present a method for jointly-learning a microphone selection mechanism and a speech enhancement network for multi-channel speech enhancement with an ad-hoc microphone array. The attention-based microphone selection mechanism is trai ned to reduce communication-costs through a penalty term which represents a task-performance/ communication-cost trade-off. While working within the trade-off, our method can intelligently stream from more microphones in lower SNR scenes and fewer microphones in higher SNR scenes. We evaluate the model in complex echoic acoustic scenes with moving sources and show that it matches the performance of models that stream from a fixed number of microphones while reducing communication costs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا