ﻻ يوجد ملخص باللغة العربية
Galactic halos are of great importance for our understanding of both the dark matter nature and primordial non-Gaussianity in the perturbation spectrum, a powerful discriminant of the physical mechanisms that generated the cosmological fluctuations observed today. In this paper we analyze {it Planck} data towards the galaxy M104 (Sombrero) and find an asymmetry in the microwave temperature which extends up to about $1 degr$ from the galactic center. This frequency-independent asymmetry is consistent with that induced by the Doppler effect due to the galactic rotation and we find a probability of less than about $0.2%$ that it is due to a random fluctuation of the microwave background. In addition, {it Planck} data indicate the relatively complex dynamics of the M104 galactic halo, and this appears to be in agreement with previous studies. In view of our previous analysis of the dark halos of nearby galaxies, this finding confirms the efficiency of the method used in revealing and mapping the dark halos around relatively nearby edge-on galaxies.
Without the interference of a number of events, galaxies may suffer in crowded environments (e.g., stripping, harassment, strangulation); isolated elliptical galaxies provide a control sample for the study of galaxy formation. We present the study of
We consider a dark matter halo (DMH) of a spherical galaxy as a Bose-Einstein condensate of the ultra-light axions interacting with the baryonic matter. In the mean-field limit, we have derived the integro-differential equation of the Hartree-Fock ty
We employ isolated N-body simulations to study the response of self-interacting dark matter (SIDM) halos in the presence of the baryonic potentials. Dark matter self-interactions lead to kinematic thermalization in the inner halo, resulting in a tigh
Deep optical/near-IR surface photometry of galaxies outside the Local Group have revealed faint and very red halos around objects as diverse as disk galaxies and starbursting dwarf galaxies. The colours of these structures are too extreme to be recon
We study the distribution of cold dark matter (CDM) in cosmological simulations from the FIRE (Feedback In Realistic Environments) project, for $M_{ast}sim10^{4-11},M_{odot}$ galaxies in $M_{rm h}sim10^{9-12},M_{odot}$ halos. FIRE incorporates explic