ترغب بنشر مسار تعليمي؟ اضغط هنا

A wind-based unification model for NGC 5548: spectral holidays, non-disk emission, and implications for changing-look quasars

73   0   0.0 ( 0 )
 نشر من قبل Maryamossadat Dehghanian
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The 180-day Space Telescope and Optical Reverberation Mapping campaign on NGC 5548 discovered an anomalous period, the broad-line region (BLR) holiday, in which the emission lines decorrelated from the continuum variations. This is important since the correlation between the continuum-flux variations and the emission-line response is the basic assumption for black hole (BH) mass determinations through reverberation mapping. During the BLR holiday, the high-ionization intrinsic absorption lines also decorrelated from the continuum as a result of variable covering factor of the line of sight (LOS) obscurer. The emission lines are not confined to the LOS, so this does not explain the BLR holiday. If the LOS obscurer is a disk wind, its streamlines must extend down to the plane of the disk and the base of the wind would lie between the BH and the BLR, forming an equatorial obscurer. This obscurer can be transparent to ionizing radiation, or can be translucent, blocking only parts of the SED, depending on its density. An emission-line holiday is produced if the wind density increases only slightly above its transparent state. Both obscurers are parts of the same wind, so they can have associated behavior in a way that explains both holidays. A very dense wind would block nearly all ionizing radiation, producing a Seyfert 2 and possibly providing a contributor to the changing-look AGN phenomenon. Disk winds are very common and we propose that the equatorial obscurers are too, but mostly in a transparent state.



قيم البحث

اقرأ أيضاً

84 - Hengxiao Guo 2019
Changing-Look (CL) is a rare phenomenon of Active Galactic Nuclei (AGNs) that exhibit emerging or disappearing broad lines accompanied by continuum variations on astrophysically short timescales ($lesssim$ 1 yr to a few decades). While previous studi es have found Balmer-line (broad H$alpha$ and/or H$beta$) CL AGNs, the broad Mg II line is persistent even in dim states. No unambiguous Mg II CL AGN has been reported to date. We perform a systematic search of Mg II CL AGNs using multi-epoch spectra of a special population of Mg II-emitters (characterized by strong broad Mg II emission with little evidence for AGN from other normal indicators such as broad H$alpha$ and H$beta$ or blue power-law continua) from the Fourteenth Data Release of the Sloan Digital Sky Survey. We present the discovery of the first unambiguous case of an Mg II CL AGN, SDSS J152533.60+292012.1 (at redshift $z$ = 0.449), which is turning off within rest-frame 286 days. The dramatic diminishing of Mg II equivalent width (from 110 $pm$ 26 Angstrom to being consistent with zero), together with little optical continuum variation ($Delta V_{rm max-min}$ $=$ 0.17 $pm$ 0.05 mag) coevally over $sim$ 10 years, rules out dust extinction or a tidal disruption event. Combined with previously known H$beta$ CL AGNs, we construct a sequence that represents different temporal stages of CL AGNs. This CL sequence is best explained by the photoionization model of Guo et al. (2019). In addition, we present two candidate turn-on Mg II CL AGNs and a sample of 361 Mg II-emitters for future Mg II CL AGN searches.
We present a systematic search for changing-look quasars based on repeat photometry from SDSS and Pan-STARRS1, along with repeat spectra from SDSS and SDSS-III BOSS. Objects with large, |Delta g|>1 mag photometric variations in their light curves are selected as candidates to look for changes in broad emission line (BEL) features. Out of a sample of 1011 objects that satisfy our selection criteria and have more than one epoch of spectroscopy, we find 10 examples of quasars that have variable and/or changing-look BEL features. Four of our objects have emerging BELs; five have disappearing BELs, and one object shows tentative evidence for having both emerging and disappearing BELs. With redshifts in the range 0.20 < z < 0.63, this sample includes the highest-redshift changing-look quasars discovered to date. We highlight the quasar J102152.34+464515.6 at z = 0.204. Here, not only have the Balmer emission lines strongly diminished in prominence, including H$beta$ all but disappearing, but the blue continuum $f_{ u} propto u^{1/3}$ typical of an AGN is also significantly diminished in the second epoch of spectroscopy. Using our selection criteria, we estimate that >15% of strongly variable luminous quasars display changing-look BEL features on rest-frame timescales of 8 to 10 years. Plausible timescales for variable dust extinction are factors of 2-10 too long to explain the dimming and brightening in these sources, and simple dust reddening models cannot reproduce the BEL changes. On the other hand, an advancement such as disk reprocessing is needed if the observed variations are due to accretion rate changes.
If the disappearance of the broad emission lines observed in changing-look quasars originates from the obscuration of the quasar core by dusty clouds moving in the torus, high linear optical polarization would be expected in those objects. We then me asured the rest-frame UV-blue linear polarization of a sample of 13 changing-look quasars, 7 of them being in a type 1.9-2 state. For all quasars but one the polarization degree is lower than 1%. This suggests that the disappearance of the broad emission lines cannot be attributed to dust obscuration, and supports the scenario in which changes of look are caused by a change in the rate of accretion onto the supermassive black hole. Such low polarization degrees also indicate that these quasars are seen under inclinations close to the system axis. One type 1.9-2 quasar in our sample shows a high polarization degree of 6.8%. While this polarization could be ascribed to obscuration by a moving dusty cloud, we argue that this is unlikely given the very long time needed for a cloud from the torus to eclipse the broad emission line region of that object. We propose that the high polarization is due to the echo of a past bright phase seen in polar-scattered light. This interpretation raises the possibility that broad emission lines observed in the polarized light of some type 2 active galactic nuclei can be echoes of past type 1 phases and not evidence of hidden broad emission line regions.
The incidence of broad absorption lines (BALs) in quasar samples is often interpreted in the context of a geometric unification model consisting of an accretion disc and an associated outflow. We use the the Sloan Digital Sky Survey (SDSS) quasar sam ple to test this model by examining the equivalent widths (EWs) of CIV 1550AA, Mg II 2800AA, [OIII] 5007AA and C III] 1909AA. We find that the emission line EW distributions in BAL and non-BAL quasars are remarkably similar -- a property that is inconsistent with scenarios in which a BAL outflow rises equatorially from a geometrically thin, optically thick accretion disc. We construct simple models to predict the distributions from various geometries; these models confirm the above finding and disfavour equatorial geometries. We show that obscuration, line anisotropy and general relativistic effects on the disc continuum are unlikely to hide an EW inclination dependence. We carefully examine the radio and polarisation properties of BAL quasars. Both suggest that they are most likely viewed (on average) from intermediate inclinations, between type 1 and type 2 AGN. We also find that the low-ionization BAL quasars in our sample are not confined to one region of `Eigenvector I parameter space. Overall, our work leads to one of the following conclusions, or some combination thereof: (i) the continuum does not emit like a geometrically thin, optically thick disc; (ii) BAL quasars are viewed from similar angles to non-BAL quasars, i.e. low inclinations; (iii) geometric unification does not explain the fraction of BALs in quasar samples.
We report on three redshift $z>2$ quasars with dramatic changes in their C IV emission lines, the first sample of changing-look quasars (CLQs) at high redshift. This is also the first time the changing-look behaviour has been seen in a high-ionisatio n emission line. SDSS J1205+3422, J1638+2827, and J2228+2201 show interesting behaviour in their observed optical light curves, and subsequent spectroscopy shows significant changes in the C IV broad emission line, with both line collapse and emergence being displayed on rest-frame timescales of $sim$240-1640 days. These are rapid changes, especially when considering virial black hole mass estimates of $M_{rm BH} > 10^{9} M_{odot}$ for all three quasars. Continuum and emission line measurements from the three quasars show changes in the continuum-equivalent width plane with the CLQs seen to be on the edge of the full population distribution, and showing indications of an intrinsic Baldwin effect. We put these observations in context with recent state-change models, and note that even in their observed low-state, the C IV CLQs are generally above $sim$5% in Eddington luminosity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا