ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining the detectability of water ice in debris disks

184   0   0.0 ( 0 )
 نشر من قبل Minjae Kim
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Water ice is important for the evolution and preservation of life. Identifying the distribution of water ice in debris disks is therefore of great interest in the field of astrobiology. Furthermore, icy dust grains are expected to play important roles throughout the entire planet formation process. However, currently available observations only allow deriving weak conclusions about the existence of water ice in debris disks. We investigate whether it is feasible to detect water ice in typical debris disk systems. We take the following ice destruction mechanisms into account: sublimation of ice, dust production through planetesimal collisions, and photosputtering by UV-bright central stars. We consider icy dust mixture particles with various shapes consisting of amorphous ice, crystalline ice, astrosilicate, and vacuum inclusions. We calculated optical properties of inhomogeneous icy dust mixtures using effective medium theories, that is, Maxwell-Garnett rules. Subsequently, we generated synthetic debris disk observables, such as spectral energy distributions and spatially resolved thermal reemission and scattered light intensity and polarization maps with our code DMS. We find that the prominent $sim$ 3 $murm{m}$ and 44 $murm{m}$ water ice features can be potentially detected in future observations of debris disks with the James Webb Space Telescope and the Space Infrared telescope for Cosmology and Astrophysics. We show that the sublimation of ice, collisions between planetesimals, and photosputtering caused by UV sources clearly affect the observational appearance of debris disk systems. In addition, highly porous ice tends to produce highly polarized radiation at around 3 $murm{m}$. Finally, the location of the ice survival line is determined by various dust properties such as a fractional ratio of ice versus dust, physical states of ice, and the porosity of icy grains.



قيم البحث

اقرأ أيضاً

This paper investigates how the far-IR water ice features can be used to infer properties of disks around T Tauri stars and the water ice thermal history. We explore the power of future observations with SOFIA/HIRMES and SPICAs proposed far-IR instru ment SAFARI. A series of detailed radiative transfer disk models around a representative T Tauri star are used to investigate how the far-IR water ice features at 45 and 63 micron change with key disk properties: disk size, grain sizes, disk dust mass, dust settling, and ice thickness. In addition, a series of models is devised to calculate the water ice emission features from warmup, direct deposit and cooldown scenarios of the water ice in disks. Photodesorption from icy grains in disk surfaces weakens the mid-IR water ice features by factors 4-5. The far-IR water ice emission features originate from small grains at the surface snow line in disks at distance of 10-100 au. Unless this reservoir is missing in disks (e.g. transitional disks with large cavities), the feature strength is not changing. Grains larger than 10 micron do not contribute to the features. Grain settling (using turbulent description) is affecting the strength of the ice features by at most 15%. The strength of the ice feature scales with the disk dust mass and water ice fraction on the grains, but saturates for dust masses larger than 1.e-4 Msun and for ice mantles that increase the dust mass by more than 50%. The various thermal histories of water ice leave an imprint on the shape of the features (crystalline/amorphous) as well as on the peak strength and position of the 45 micron feature. SOFIA/HIRMES can only detect crystalline ice features much stronger than simulated in our standard T Tauri disk model in deep exposures (1 hr). SPICA/SAFARI can detect the typical ice features in our standard T Tauri disk model in short exposures (10 min). (abbreviated)
We present the near-infrared images and spectra of four silhouette disks in the Orion Nebula Cluster (ONC; M42) and M43 using the Subaru Adaptive Optics system. While d053-717 and d141-1952 show no water ice feature at 3.1 micron, a moderately deep ( tau~0.7) water ice absorption is detected toward d132-1832 and d216-0939. Taking into account the water ice so far detected in the silhouette disks, the critical inclination angle to produce a water ice absorption feature is confirmed to be 65-75deg. As for d216-0939, the crystallized water ice profile is exactly the same as in the previous observations taken 3.63 years ago. If the water ice material is located at 30AU, then the observations suggest it is uniform at a scale of about 3.5AU.
We review the nearby debris disk structures revealed by multi-wavelength images from Spitzer and Herschel, and complemented with detailed spectral energy distribution modeling. Similar to the definition of habitable zones around stars, debris disk st ructures should be identified and characterized in terms of dust temperatures rather than physical distances so that the heating power of different spectral type of stars is taken into account and common features in disks can be discussed and compared directly. Common features, such as warm (~150 K) dust belts near the water-ice line and cold (~50 K) Kuiper-belt analogs, give rise to our emerging understanding of the levels of order in debris disk structures and illuminate various processes about the formation and evolution of exoplanetary systems. In light of the disk structures in the debris disk twins (Vega and Fomalhaut), and the current limits on the masses of planetary objects, we suggest that the large gap between the warm and cold dust belts is the best signpost for multiple (low-mass) planets beyond the water-ice line.
The new NIKA2 camera at the IRAM 30m radiotelescope was used to observe three known debris disks in order to constrain the SED of their dust emission in the millimeter wavelength domain. We have found that the spectral index between the two NIKA2 ban ds (1mm and 2mm) is consistent with the Rayleigh-Jeans regime (lambda^{-2}), unlike the steeper spectra (lambda^{-3}) measured in the submillimeter-wavelength domain for two of the three disks $-$ around the stars Vega and HD107146. We provide a succesful proof of concept to model this spectral inversion in using two populations of dust grains, those smaller and those larger than a grain radius a0 of 0.5mm. This is obtained in breaking the slope of the size distribution and the functional form of the absorption coefficient of the standard model at a0. The third disk - around the star HR8799 - does not exhibit this spectral inversion but is also the youngest.
153 - B. Gundlach , J. Blum 2014
Water ice is one of the most abundant materials in dense molecular clouds and in the outer reaches of protoplanetary disks. In contrast to other materials (e.g., silicates) water ice is assumed to be stickier due to its higher specific surface energy , leading to faster or more efficient growth in mutual collisions. However, experiments investigating the stickiness of water ice have been scarce, particularly in the astrophysically relevant micrometer-size region and at low temperatures. In this work, we present an experimental setup to grow aggregates composed of $mathrm{mu}$m-sized water-ice particles, which we used to measure the sticking and erosion thresholds of the ice particles at different temperatures between $114 , mathrm{K}$ and $260 , mathrm{K}$. We show with our experiments that for low temperatures (below $sim 210 , mathrm{K}$), $mathrm{mu}$m-sized water-ice particles stick below a threshold velocity of $9.6 , mathrm{m , s^{-1}}$, which is approximately ten times higher than the sticking threshold of $mathrm{mu}$m-sized silica particles. Furthermore, erosion of the grown ice aggregates is observed for velocities above $15.3 , mathrm{m , s^{-1}}$. A comparison of the experimentally derived sticking threshold with model predictions is performed to determine important material properties of water ice, i.e., the specific surface energy and the viscous relaxation time. Our experimental results indicate that the presence of water ice in the outer reaches of protoplanetary disks can enhance the growth of planetesimals by direct sticking of particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا