ترغب بنشر مسار تعليمي؟ اضغط هنا

Level one Weyl modules for toroidal Lie algebras

80   0   0.0 ( 0 )
 نشر من قبل Ryosuke Kodera
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Ryosuke Kodera




اسأل ChatGPT حول البحث

We identify level one global Weyl modules for toroidal Lie algebras with certain twists of modules constructed by Moody-Eswara Rao-Yokonuma via vertex operators for type ADE and by Iohara-Saito-Wakimoto and Eswara Rao for general type. The twist is given by an action of $mathrm{SL}_{2}(mathbb{Z})$ on the toroidal Lie algebra. As a byproduct, we obtain a formula for the character of the level one local Weyl module over the toroidal Lie algebra and that for the graded character of the level one graded local Weyl module over an affine analog of the current Lie algebra.



قيم البحث

اقرأ أيضاً

249 - Chun-Ju Lai 2013
We construct a family of homomorphisms between Weyl modules for affine Lie algebras in characteristic p, which supports our conjecture on the strong linkage principle in this context. We also exhibit a large class of reducible Weyl modules beyond level one, for p not necessarily small.
In this paper, we use basic formal variable techniques to study certain categories of modules for the toroidal Lie algebra $tau$. More specifically, we define and study two categories $mathcal{E}_{tau}$ and $mathcal{C}_{tau}$ of $tau$-modules using g enerating functions, where $mathcal{E}_{tau}$ is proved to contain the evaluation modules while $mathcal{C}_{tau}$ contains certain restricted $tau$-modules, the evaluation modules, and their tensor product modules. Furthermore, we classify the irreducible integrable modules in categories $mathcal{E}_{tau}$ and $mathcal{C}_{tau}$.
For an irreducible module $P$ over the Weyl algebra $mathcal{K}_n^+$ (resp. $mathcal{K}_n$) and an irreducible module $M$ over the general liner Lie algebra $mathfrak{gl}_n$, using Shens monomorphism, we make $Potimes M$ into a module over the Witt a lgebra $W_n^+$ (resp. over $W_n$). We obtain the necessary and sufficient conditions for $Potimes M$ to be an irreducible module over $W_n^+$ (resp. $W_n$), and determine all submodules of $Potimes M$ when it is reducible. Thus we have constructed a large family of irreducible weight modules with many different weight supports and many irreducible non-weight modules over $W_n^+$ and $W_n$.
We prove that the tensor product of a simple and a finite dimensional $mathfrak{sl}_n$-module has finite type socle. This is applied to reduce classification of simple $mathfrak{q}(n)$-supermodules to that of simple $mathfrak{sl}_n$-modules. Rough st ructure of simple $mathfrak{q}(n)$-supermodules, considered as $mathfrak{sl}_n$-modules, is described in terms of the combinatorics of category $mathcal{O}$.
103 - Ryo Fujita 2016
We discuss tilting modules of affine quasi-hereditary algebras. We present an existence theorem of indecomposable tilting modules when the algebra has a large center and use it to deduce a criterion for an exact functor between two affine highest wei ght categories to give an equivalence. As an application, we prove that the Arakawa-Suzuki functor [Arakawa-Suzuki, J. of Alg. 209 (1998)] gives a fully faithful embedding of a block of the deformed BGG category of $mathfrak{gl}_{m}$ into the module category of a suitable completion of degenerate affine Hecke algebra of $GL_{n}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا