ﻻ يوجد ملخص باللغة العربية
Simulating and predicting planetary-scale techno-social systems poses heavy computational and modeling challenges. The DARPA SocialSim program set the challenge to model the evolution of GitHub, a large collaborative software-development ecosystem, using massive multi-agent simulations. We describe our best performing models and our agent-based simulation framework, which we are currently extending to allow simulating other planetary-scale techno-social systems. The challenge problem measured participants ability, given 30 months of meta-data on user activity on GitHub, to predict the next months activity as measured by a broad range of metrics applied to ground truth, using agent-based simulation. The challenge required scaling to a simulation of roughly 3 million agents producing a combined 30 million actions, acting on 6 million repositories with commodity hardware. It was also important to use the data optimally to predict the agents next moves. We describe the agent framework and the data analysis employed by one of the winning teams in the challenge. Six different agent models were tested based on a variety of machine learning and statistical methods. While no single method proved the most accurate on every metric, the broadly most successful sampled from a stationary probability distribution of actions and repositories for each agent. Two reasons for the success of these agents were their use of a distinct characterization of each agent, and that GitHub users change their behavior relatively slowly.
Trajectory interpolation, the process of filling-in the gaps and removing noise from observed agent trajectories, is an essential task for the motion inference in multi-agent setting. A desired trajectory interpolation method should be robust to nois
Activity-based models, as a specific instance of agent-based models, deal with agents that structure their activity in terms of (daily) activity schedules. An activity schedule consists of a sequence of activity instances, each with its assigned star
Simulation of population dynamics is a central research theme in computational biology, which contributes to understanding the interactions between predators and preys. Conventional mathematical tools of this theme, however, are incapable of accounti
We propose a curriculum-driven learning strategy for solving difficult multi-agent coordination tasks. Our method is inspired by a study of animal communication, which shows that two straightforward design features (mutual reward and decentralization
Collective or group intelligence is manifested in the fact that a team of cooperating agents can solve problems more efficiently than when those agents work in isolation. Although cooperation is, in general, a successful problem solving strategy, it