We report the first-principles study on the H-intercalated Cr-based superconductor KCr$_3$As$_3$H$_x$. Our results show a paramagnetic ground state for KCr$_3$As$_3$H. The electronic structure consists of two quasi-one-dimensional (Q1D) Fermi-surfaces and one 3D Fermi-surface which are mainly contributed by Cr-d$_{z^2}$, d$_{x^2-y^2}$ and d$_{xy}$ orbitals. The bare electron susceptibility shows a $Gamma$-centered imaginary peak, indicating possible ferromagnetic spin fluctuations. Upon moderate hole doping, the system undergoes a Lifshitz transition, which may enhance the Q1D feature of the system. The Bader charge analysis and electron localization functions reveal a strong bonding nature of hydrogen in KCr$_3$As$_3$H, which results in a nontrivial electron doping in KCr$_3$As$_3$H.