ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of Ultra-Luminous Infrared Galaxies as Obscured High-Energy Neutrino Source Candidates

107   0   0.0 ( 0 )
 نشر من قبل Pablo Correa
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultra-Luminous Infrared Galaxies (ULIRGs) are the most luminous objects in the infrared sky. With infrared luminosities exceeding $10^{12}$ solar luminosities, ULIRGs contain strong star formation regions which could power hadronic acceleration. Moreover, a significant fraction of ULIRGs have been found to host Active Galactic Nuclei, which could also be a source of hadronic acceleration. Furthermore, such high infrared luminosities indicate that large amounts of dust are present in these objects. In the presence of hadronic acceleration, this dust not only represents an excellent target for high-energy neutrino production through the pp-channel, but it could also attenuate a significant fraction of the gamma rays that are produced in this process. This could relieve the apparent tension between the diffuse IceCube neutrino flux and the diffuse gamma-ray flux measured by Fermi-LAT. We present our source selection criteria and IceCube sensitivities in view of a search for high-energy neutrinos from these so far unexplored objects.



قيم البحث

اقرأ أيضاً

70 - Lukas Merten 2021
Fanaroff-Riley (FR) 0 radio galaxies compose a new class of radio galaxies, which are usually weaker but much more numerous than the well-established class of FR 1 and FR 2 galaxies. The latter classes have been proposed as sources of the ultra-high- energy cosmic rays (UHECRs) with energies reaching up to ${sim}10^{20}$ eV. Based on this conjecture, the possibility of UHECR acceleration and survival in an FR 0 source environment is examined in this work. In doing so, an average spectral energy distribution (SED) based on data from the FR 0 catalog (FR0CAT) is compiled. The resulting photon fields are used as targets for UHECRs, which suffer from electromagnetic pair production, photo-disintegration, photo-meson production losses, and synchrotron radiation. Multiple mechanisms are discussed to assess the UHECR acceleration probability, including Fermi-I order and gradual shear accelerations, and particle escape from the source region. This work shows that in a hybrid scenario, combining Fermi and shear accelerations, FR 0 galaxies can contribute to the observed UHECR flux, as long as $Gamma_mathrm{j}gtrsim 1.6$, where shear acceleration starts to dominate over escape. Even in less optimistic scenarios, FR 0s can be expected to contribute to the cosmic-ray flux between the knee and the ankle. Our results are relatively robust with respect to the realized magnetic turbulence model and the speed of the accelerating shocks.
With infrared luminosities $L_{mathrm{IR}} geq 10^{12} L_{odot}$, Ultra-Luminous Infrared Galaxies (ULIRGs) are the most luminous objects in the infrared sky. They are predominantly powered by starburst regions with star-formation rates $gtrsim 100~ M_{odot}~ mathrm{yr^{-1}}$. ULIRGs can also host an active galactic nucleus (AGN). Both the starburst and AGN environments contain plausible hadronic accelerators, making ULIRGs candidate neutrino sources. We present the results of an IceCube stacking analysis searching for high-energy neutrinos from a representative sample of 75 ULIRGs with redshift $z leq 0.13$. While no significant excess of ULIRG neutrinos is found in 7.5 years of IceCube data, upper limits are reported on the neutrino flux from these 75 ULIRGs as well as an extrapolation for the full ULIRG source population. In addition, constraints are provided on models predicting neutrino emission from ULIRGs.
Ultra-luminous infrared galaxies (ULIRGs) are the most luminous and intense starburst galaxies in the Universe. Both their star-formation rate (SFR) and gas surface mass density are very high, implying a high supernovae rate and an efficient energy c onversion of energetic protons. A small fraction of these supernovae is the so-called hypernovae with a typical kinetic energy ~1e52 erg and a shock velocity >=1e9 cm/s. The strong shocks driven by hypernovae are able to accelerate cosmic ray protons up to 1e17 eV. These energetic protons lose a good fraction of their energy through proton-proton collision when ejected into very dense interstellar medium, and as a result, produce high energy neutrinos (<=5 PeV). Recent deep infrared surveys provide solid constraints on the number density of ULIRGs across a wide redshift range 0<z<2.3, allowing us to derive the flux of diffuse neutrinos from hypernovae. We find that at PeV energies, the diffuse neutrinos contributed by ULIRGs are comparable with the atmosphere neutrinos with the flux of 2e-9GeV cm^-2/s/sr, by assuming the injected cosmic ray power law spectrum with an index of -2.
Ultra-luminous infrared galaxies (ULIRGs) have infrared luminosities $L_{mathrm{IR}} geq 10^{12} L_{odot}$, making them the most luminous objects in the infrared sky. These dusty objects are generally powered by starbursts with star-formation rates t hat exceed $100~ M_{odot}~ mathrm{yr}^{-1}$, possibly combined with a contribution from an active galactic nucleus. Such environments make ULIRGs plausible sources of astrophysical high-energy neutrinos, which can be observed by the IceCube Neutrino Observatory at the South Pole. We present a stacking search for high-energy neutrinos from a representative sample of 75 ULIRGs with redshift $z leq 0.13$ using 7.5 years of IceCube data. The results are consistent with a background-only observation, yielding upper limits on the neutrino flux from these 75 ULIRGs. For an unbroken $E^{-2.5}$ power-law spectrum, we report an upper limit on the stacked flux $Phi_{ u_mu + bar{ u}_mu}^{90%} = 3.24 times 10^{-14}~ mathrm{TeV^{-1}~ cm^{-2}~ s^{-1}}~ (E/10~ mathrm{TeV})^{-2.5}$ at 90% confidence level. In addition, we constrain the contribution of the ULIRG source population to the observed diffuse astrophysical neutrino flux as well as model predictions.
233 - A. Omont , Chentao Yang , P. Cox 2013
Using IRAM PdBI we report the detection of H2O in six new lensed ultra-luminous starburst galaxies at high redshift, discovered in the Herschel H-ATLAS survey. The sources are detected either in the 2_{02}-1_{11} or 2_{11}-2_{02} H_2O emission lines with integrated line fluxes ranging from 1.8 to 14 Jy.km/s. The corresponding apparent luminosities are mu x L_H2O ~ 3-12 x 10^8 Lo, where mu is the lensing magnification factor (3 < mu < 12). These results confirm that H2O lines are among the strongest molecular lines in such galaxies, with intensities almost comparable to those of the high-J CO lines, and same profiles and line widths (200-900 km/s) as the latter. With the current sensitivity of PdBI, H2O can therefore easily be detected in high-z lensed galaxies (with F(500um) > 100 mJy) discovered in the Herschel surveys. Correcting the luminosities for lensing amplification, L_H2O is found to have a strong dependence on the IR luminosity, varying as ~L_IR^{1.2}. This relation which needs to be confirmed with better statistics, may indicate a role of radiative (IR) excitation of the H2O lines, and implies that high-z galaxies with L_IR >~ 10^13 Lo tend to be very strong emitters in H2O, that have no equivalent in the local universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا