ﻻ يوجد ملخص باللغة العربية
Ultra-Luminous Infrared Galaxies (ULIRGs) are the most luminous objects in the infrared sky. With infrared luminosities exceeding $10^{12}$ solar luminosities, ULIRGs contain strong star formation regions which could power hadronic acceleration. Moreover, a significant fraction of ULIRGs have been found to host Active Galactic Nuclei, which could also be a source of hadronic acceleration. Furthermore, such high infrared luminosities indicate that large amounts of dust are present in these objects. In the presence of hadronic acceleration, this dust not only represents an excellent target for high-energy neutrino production through the pp-channel, but it could also attenuate a significant fraction of the gamma rays that are produced in this process. This could relieve the apparent tension between the diffuse IceCube neutrino flux and the diffuse gamma-ray flux measured by Fermi-LAT. We present our source selection criteria and IceCube sensitivities in view of a search for high-energy neutrinos from these so far unexplored objects.
Fanaroff-Riley (FR) 0 radio galaxies compose a new class of radio galaxies, which are usually weaker but much more numerous than the well-established class of FR 1 and FR 2 galaxies. The latter classes have been proposed as sources of the ultra-high-
With infrared luminosities $L_{mathrm{IR}} geq 10^{12} L_{odot}$, Ultra-Luminous Infrared Galaxies (ULIRGs) are the most luminous objects in the infrared sky. They are predominantly powered by starburst regions with star-formation rates $gtrsim 100~
Ultra-luminous infrared galaxies (ULIRGs) are the most luminous and intense starburst galaxies in the Universe. Both their star-formation rate (SFR) and gas surface mass density are very high, implying a high supernovae rate and an efficient energy c
Ultra-luminous infrared galaxies (ULIRGs) have infrared luminosities $L_{mathrm{IR}} geq 10^{12} L_{odot}$, making them the most luminous objects in the infrared sky. These dusty objects are generally powered by starbursts with star-formation rates t
Using IRAM PdBI we report the detection of H2O in six new lensed ultra-luminous starburst galaxies at high redshift, discovered in the Herschel H-ATLAS survey. The sources are detected either in the 2_{02}-1_{11} or 2_{11}-2_{02} H_2O emission lines