ترغب بنشر مسار تعليمي؟ اضغط هنا

Diameter-independent skyrmion Hall angle in the plastic flow regime observed in chiral magnetic multilayers

118   0   0.0 ( 0 )
 نشر من قبل Katharina Zeissler Dr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic skyrmions are topologically non-trivial nanoscale objects. Their topology, which originates in their chiral domain wall winding, governs their unique response to a motion-inducing force. When subjected to an electrical current, the chiral winding of the spin texture leads to a deflection of the skyrmion trajectory, characterized by an angle with respect to the applied force direction. This skyrmion Hall angle was believed to be skyrmion diameter-dependent. In contrast, our experimental study finds that within the plastic flow regime the skyrmion Hall angle is diameter-independent. At an average velocity of 6 $pm$ 1 m/s the average skyrmion Hall angle was measured to be 9{deg} $pm$ 2{deg}. In fact, in the plastic flow regime, the skyrmion dynamics is dominated by the local energy landscape such as materials defects and the local magnetic configuration.



قيم البحث

اقرأ أيضاً

Skyrmions are topologically protected, two-dimensional, localized hedgehogs and whorls of spin. Originally invented as a concept in field theory for nuclear interactions, skyrmions are central to a wide range of phenomena in condensed matter. Their r ealization at room temperature (RT) in magnetic multilayers has generated considerable interest, fueled by technological prospects and the access granted to fundamental questions. The interaction of skyrmions with charge carriers gives rise to exotic electrodynamics, such as the topological Hall effect (THE), the Hall response to an emergent magnetic field, a manifestation of the skyrmion Berry-phase. The proposal that THE can be used to detect skyrmions needs to be tested quantitatively. For that it is imperative to develop comprehensive understanding of skyrmions and other chiral textures, and their electrical fingerprint. Here, using Hall transport and magnetic imaging, we track the evolution of magnetic textures and their THE signature in a technologically viable multilayer film as a function of temperature ($T$) and out-of-plane applied magnetic field ($H$). We show that topological Hall resistivity ($rho_mathrm{TH}$) scales with the density of isolated skyrmions ($n_mathrm{sk}$) over a wide range of $T$, confirming the impact of the skyrmion Berry-phase on electronic transport. We find that at higher $n_mathrm{sk}$ skyrmions cluster into worms which carry considerable topological charge, unlike topologically-trivial spin spirals. While we establish a qualitative agreement between $rho_mathrm{TH}(H,T)$ and areal density of topological charge $n_mathrm{T}(H,T)$, our detailed quantitative analysis shows a much larger $rho_mathrm{TH}$ than the prevailing theory predicts for observed $n_mathrm{T}$.
Magnetic skyrmions can be driven by an applied spin-polarized electron current which exerts a spin-transfer torque on the localized spins constituting the skyrmion. However, the longitudinal dynamics is plagued by the skyrmion Hall effect which cause s the skyrmions to acquire a transverse velocity component. We show how to use spin-orbit interaction to control the skyrmion Hall angle and how the interplay of spin-transfer and spin-orbit torques can lead to a complete suppression of the transverse motion. Since the spin-orbit torques can be controlled all-electronically by a gate voltage, the skyrmion motion can be steered all-electronically on a broad racetrack at high speed and conceptually new writing and gating operations can be realized.
The understanding of the dynamical properties of skyrmion is a fundamental aspect for the realization of a competitive skyrmion based technology beyond CMOS. Most of the theoretical approaches are based on the approximation of a rigid skyrmion. Howev er, thermal fluctuations can drive a continuous change of the skyrmion size via the excitation of thermal modes. Here, by taking advantage of the Hilbert-Huang transform, we demonstrate that at least two thermal modes can be excited which are non-stationary in time. In addition, one limit of the rigid skyrmion approximation is that this hypothesis does not allow for correctly describing the recent experimental evidence of skyrmion Hall angle dependence on the amplitude of the driving force, which is proportional to the injected current. In this work, we show that, in an ideal sample, the combined effect of field-like and damping-like torques on a breathing skyrmion can indeed give rise to such a current dependent skyrmion Hall angle. While here we design and control the breathing mode of the skyrmion, our results can be linked to the experiments by considering that the thermal fluctuations and/or disorder can excite the breathing mode. We also propose an experiment to validate our findings.
Optical excitation provides a powerful tool to investigate non-equilibrium physics in quantum Hall systems. Moreover, the length scale associated with photo-excited charge carries lies between that of local probes and global transport measurements. H ere, we investigate non-equilibrium physics of optically-excited charge carriers in graphene through photocurrent measurements in the integer quantum Hall regime. We observe that the photocurrent oscillates as a function of Fermi level, revealing the Landau-level quantization, and that the photocurrent oscillations are different for Fermi levels near and distant from the Dirac point. Our observation qualitatively agrees with a model that assumes the photocurrent is dominated by chiral edge transport of non-equilibrium carriers. Our experimental results are consistent with electron and hole chiralities being the same when the Fermi level is distant from the Dirac point, and opposite when near the Dirac point.
117 - A. Chacon , L. Heinen , M. Halder 2021
Magnetic materials can host skyrmions, which are topologically non-trivial spin textures. In chiral magnets with cubic lattice symmetry, all previously-observed skyrmion phases require thermal fluctuations to become thermodynamically stable in bulk m aterials, and therefore exist only at relatively high temperature, close to the helimagnetic transition temperature. Other stabilization mechanisms require a lowering of the cubic crystal symmetry. Here, we report the identification of a second skyrmion phase in Cu$_{2}$OSeO$_{3}$ at low temperature and in the presence of an applied magnetic field. The new skyrmion phase is thermodynamically disconnected from the well-known, nearly-isotropic, high-temperature phase, and exists, in contrast, when the external magnetic field is oriented along the $langle100rangle$ crystal axis only. Theoretical modelling provides evidence that the stabilization mechanism is given by well-known cubic anisotropy terms, and accounts for an additional observation of metastable helices tilted away from the applied field. The identification of two distinct skyrmion phases in the same material and the generic character of the underlying mechanism suggest a new avenue for the discovery, design, and manipulation of topological spin textures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا