ﻻ يوجد ملخص باللغة العربية
Time evolution of an optical image of a pressureless star under gravitational collapse is studied in the geometric optics approximation. The star surface is assumed to emit radiation obeying Lamberts cosine law but with an arbitrary spectral intensity in the comoving frame. We develop a formalism for predicting observable quantities by photon counting and by radiometry, in particular, spectral photon flux and spectral radiant flux. Then, this method is applied to the two cases: One is monochromatic radiation, and the other is blackbody radiation. The two kinds of spectral flux are calculated numerically for each case. It is reconfirmed that the redshift factor remains finite and the star becomes gradually invisible due to decay of the photon flux. We also develop an approximate method to present analytic formulas that describe the late time behavior. A possible connection of our study to observation of high-energy neutrinos is briefly discussed.
Is flipping a coin a deterministic process or a random one? We do not allow bounces. If we know the initial velocity and the spin given to the coin, mechanics should predict the face it lands on. However, the coin toss has been everyones introduction
We study the evolution of a self interacting scalar field in Einstein-Gauss-Bonnet theory in four dimension where the scalar field couples non minimally with the Gauss-Bonnet term. Considering a polynomial coupling of the scalar field with the Gauss-
The capability of the Event Horizon Telescope (EHT) to image the nearest supermassive black hole candidates at horizon-scale resolutions offers a novel means to study gravity in its strongest regimes and to test different models for these objects. He
Recently, the Thakurta metric has been adopted as a model of primordial black holes by several authors. We show that the spacetime described by this metric has neither black-hole event horizon nor black-hole trapping horizon and involves the violatio
We analyze analytically and numerically the origin of the singularity in the course of the collapse of a wormhole with the exotic scalar field Psi with negative energy density, and with this field Psi together with the ordered magnetic field H. We do