An extensive analysis has been carried out of the performance of standard families of basis sets with the hierarchy of coupled cluster methods CC2, CCSD, CC3 and CCSDT in computing selected Oxygen, Carbon and Nitrogen K-edge (vertical) core excitation and ionization energies within a core-valence separated scheme in the molecules water, ammonia, and carbon monoxide. Complete basis set limits for the excitation energies have been estimated via different basis set extrapolation schemes. The importance of scalar relativistic effects has been established within the spin-free exact two-component theory in its one-electron variant (SFX2C-1e).