ﻻ يوجد ملخص باللغة العربية
The land-use map is an important data that can reflect the use and transformation of human land, and can provide valuable reference for land-use planning. For the traditional image classification method, producing a high spatial resolution (HSR), land-use map in large-scale is a big project that requires a lot of human labor, time, and financial expenditure. The rise of the deep learning technique provides a new solution to the problems above. This paper proposes a fast and precise method that can achieve large-scale land-use classification based on deep convolutional neural network (DCNN). In this paper, we optimize the data tiling method and the structure of DCNN for the multi-channel data and the splicing edge effect, which are unique to remote sensing deep learning, and improve the accuracy of land-use classification. We apply our improved methods in the Guangdong Province of China using GF-1 images, and achieve the land-use classification accuracy of 81.52%. It takes only 13 hours to complete the work, which will take several months for human labor.
Recent work has shown that deep learning models can be used to classify land-use data from geospatial satellite imagery. We show that when these deep learning models are trained on data from specific continents/seasons, there is a high degree of vari
High-resolution satellite imagery have been increasingly used on remote sensing classification problems. One of the main factors is the availability of this kind of data. Even though, very little effort has been placed on the zebra crossing classific
We propose incorporating human labelers in a model fine-tuning system that provides immediate user feedback. In our framework, human labelers can interactively query model predictions on unlabeled data, choose which data to label, and see the resulti
Image annotation aims to annotate a given image with a variable number of class labels corresponding to diverse visual concepts. In this paper, we address two main issues in large-scale image annotation: 1) how to learn a rich feature representation
Collecting large annotated datasets in Remote Sensing is often expensive and thus can become a major obstacle for training advanced machine learning models. Common techniques of addressing this issue, based on the underlying idea of pre-training the