ﻻ يوجد ملخص باللغة العربية
We study the paradigmatic model of a qubit interacting with a structured environment and driven by an external field by means of a microscopic and a phenomenological model. The validity of the so-called fixed-dissipator (FD) assumption, where the dissipation is taken as the one of the undriven qubit is discussed. In the limit of a flat spectrum, the FD model and the microscopic one remarkably practically coincide. For a structured reservoir, we show in the secular limit that steady states can be different from those determined from the FD model, opening the possibility for exploiting reservoir engineering. We explore it as a function of the control field parameters, of the characteristics of the spectral density and of the environment temperature. The observed widening of the family of target states by reservoir engineering suggests new possibilities in quantum control protocols.
Based on the results of a previous paper (Paper I), by performing the geometrical mapping via coherent states, phase transitions are investigated and compared within two algebraic cluster models. The difference between the Semimicroscopic Algebraic C
The geometrical mapping of algebraic nuclear cluster models is investigated within the coherent state formalism. Two models are considered: the Semimicroscopic Algebraic Cluster Model (SACM) and the Phenomenological Algebraic Cluster Model (PACM), wh
Recent years have seen tremendous progress in the theoretical understanding of quantum systems driven dissipatively by coupling them to different baths at their edges. This was possible because of the concurrent advances in the models used to represe
We show that non-Markovian effects of the reservoirs can be used as a resource to extract work from an Otto cycle. The state transformation under non-Markovian dynamics is achieved via a two-step process, namely an isothermal process using a Markovia
Quantum technology resorts to efficient utilization of quantum resources to realize technique innovation. The systems are controlled such that their states follow the desired manners to realize different quantum protocols. However, the decoherence ca