ﻻ يوجد ملخص باللغة العربية
We propose a design of cylindrical elastic cloak for coupled in-plane shear waves consisting of concentric layers of sub-wavelength resonant stress-free inclusions shaped as swiss-rolls. The scaling factor between inclusions sizes is according to Pendrys transform. Unlike the hitherto known situations, the present geometric transform starts from a Willis medium and further assumes that displacement fields ${bf u}$ in original medium and ${bf u}$ in transformed medium remain unaffected (${bf u}={bf u}$), and this breaks the minor-symmetries of the rank-4 and rank-3 tensors in the Willis equation that describes the transformed effective medium. We achieve some cloaking for a shear polarized source at specific, resonant sub-wavelength, frequencies, when it is located near a clamped obstacle surrounded by the structured cloak. Such an effective medium allows for strong Willis coupling [Quan et al., Physical Review Letters {bf 120}(25), 254301 (2018)], notwithstanding potential chiral elastic effects [Frenzel et al., Science {bf 358}(6366), 1072 (2017)], and thus mitigates roles of Willis and Cosserat media in the achieved elastodynamic cloaking.
A theory is presented showing that cloaking of objects from antiplane elastic waves can be achieved by elastic pre-stress of a neo-Hookean nonlinear elastic material. This approach would appear to eliminate the requirement of metamaterials with inhom
We develop an approach for simulating acousto-elastic wave phenomena, including scattering from fluid-solid boundaries, where the solid is allowed to be anisotropic, with the Discontinuous Galerkin method. We use a coupled first-order elastic strain-
New connections between static elastic cloaking, low frequency elastic wave scattering and neutral inclusions are established in the context of two dimensional elasticity. A cylindrical core surrounded by a cylindrical shell is embedded in a uniform
In this paper we consider the compact plane sets known as Swiss cheese sets, which are a useful source of examples in the theory of uniform algebras and rational approximation. We introduce a notion of allocation map connected with Swiss cheeses, and
Soft electroactive materials can undergo large deformation subjected to either mechanical or electrical stimulus, and hence they can be excellent candidates for designing extremely flexible and adaptive structures and devices. This paper proposes a s