ترغب بنشر مسار تعليمي؟ اضغط هنا

How planets grow by pebble accretion II: Analytical calculations on the evolution of polluted envelopes

65   0   0.0 ( 0 )
 نشر من قبل Marc Brouwers
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Proto-planets embedded in their natal disks acquire hot envelopes as they grow and accrete solids. This ensures that the material they accrete - pebbles, as well as (small) planetesimals - will vaporize to enrich their atmospheres. Enrichment modifies an envelopes structure and significantly alters its further evolution. Our aim is to describe the formation of planets with polluted envelopes from the moment that impactors begin to sublimate to beyond the disks eventual dissipation. We constructed an analytical interior structure model, characterized by a hot and uniformly mixed high-Z vapor layer surrounding the core, located below the usual unpolluted radiative-convective regions. The evolution of planets with uniformly mixed polluted envelopes follows four potential phases. Initially, the central core grows directly through impacts and rainout until the envelope becomes hot enough to vaporize and absorb all incoming solids. We find that a planet reaches runaway accretion when the sum of its core and vapor mass exceeds a value that we refer to as the critical metal mass - a criterion that supersedes the traditional critical core mass. It scales positively with both the pollutants evaporation temperature and with the planets core mass. Hence, planets at shorter orbital separations require the accretion of more solids to reach runaway as they accrete less volatile materials. If the solids accretion rate dries up, we identify the decline of the mean molecular weight - dilution - as a mechanism to limit gas accretion during a polluted planets embedded cooling phase. When the disk ultimately dissipates, the envelopes inner temperature declines and its vapor eventually rains out, augmenting the mass of the core. The energy release that accompanies this does not result in significant mass-loss, as it only occurs after the planet has substantially contracted.



قيم البحث

اقرأ أيضاً

94 - Chris Ormel 2020
During their formation, planets form large, hot atmospheres due to the ongoing accretion of solids. It has been customary to assume that all solids end up at the center constituting a core of refractory materials, whereas the envelope remains metal-f ree. Recent work, as well as observations by the JUNO mission, indicate however that the distinction may not be so clear cut. Indeed, small silicate, pebble-sized particles will sublimate in the atmosphere when they hit the sublimation temperature (T ~ 2,000 K). In this paper we extend previous analytical work to compute the properties of planets under such a pebble accretion scenario. We conduct 1D numerical calculations of the atmosphere of an accreting planet, solving the stellar structure equations, augmented by a non-ideal equation of state that describes a hydrogen/helium-silicate vapor mixture. Calculations terminate at the point where the total mass in metal equals that of the H/He gas, which we numerically confirm as the onset of runaway gas accretion. When pebbles sublimate before reaching the core, insufficient (accretion) energy is available to mix dense, vapor-rich lower layers with the higher layers of lower metallicity. A gradual structure in which Z decreases with radius is therefore a natural outcome of planet formation by pebble accretion. We highlight, furthermore, that (small) pebbles can act as the dominant source of opacity, preventing rapid cooling and presenting a channel for (mini-)Neptunes to survive in gas-rich disks. Nevertheless, once pebble accretion subsides, the atmosphere rapidly clears followed by runaway gas accretion. We consider atmospheric recycling to be the more probable mechanisms that have stalled the growth of these planets envelopes.
Context: Planet formation by pebble accretion is an alternative to planetesimal-driven core accretion. In this scenario, planets grow by accreting cm-to-m-sized pebbles instead of km-sized planetesimals. One of the main differences with planetesimal- driven core accretion is the increased thermal ablation experienced by pebbles. This provides early enrichment to the planets envelope, which changes the process of core growth. Aims: We aim to predict core masses and envelope compositions of planets that form by pebble accretion and compare mass deposition of pebbles to planetesimals. Methods: We model the early growth of a proto-planet by calculating the structure of its envelope, taking into account the fate of impacting pebbles or planetesimals. The region where high-Z material can exist in vapor form is determined by the vapor pressure. We include enrichment effects by locally modifying the mean molecular weight. Results: In the pebble case, three phases of core growth can be identified. In the first phase, pebbles impact the core without significant ablation. During the second phase, ablation becomes increasingly severe. A layer of high-Z vapor starts to form around the core that absorbs a small fraction of the ablated mass. The rest either rains out to the core or mixes outwards instead, slowing core growth. In the third phase, the vapor inner region expands outwards, absorbing an increasing fraction of the ablated material as vapor. Rainout ends before the core mass reaches 0.6 M_Earth, terminating direct core growth. In the case of icy H2O pebbles, this happens before 0.1 M_Earth. Conclusions: Our results indicate that pebble accretion can directly form rocky cores up to only 0.6 M_Earth, and is unable to form similarly sized icy cores. Subsequent core growth can proceed indirectly when the planet cools, provided it is able to retain its high-Z material.
The amount of nebular gas that a planet can bind is limited by its cooling rate, which is set by the opacity of its envelope. Accreting dust and pebbles contribute to the envelope opacity and, thus, influence the outcome of planet formation. Our aim is to model the size evolution and opacity contribution of solids inside planetary envelopes. We then use the resultant opacity relations to study emergent trends in planet formation. We design a model for the opacity of solids in planetary envelopes that accounts for the growth, fragmentation and erosion of pebbles during their sedimentation. We formulate analytical expressions for the opacity of pebbles and dust and map out their trends as a function of depth, planet mass, distance and accretion rate. We find that the accretion of pebbles rather than planetesimals can produce fully convective envelopes, but only in lower-mass planets that reside in the outer disk or in those that are accreting pebbles at a high rate. In these conditions, pebble sizes are limited by fragmentation and erosion, allowing them to pile up in the envelope. At higher planetary masses or reduced accretion rates, a different regime applies where the sizes of sedimenting pebbles are only limited by their rate of growth. The opacity in this growth-limited regime is much lower, steeply declines with depth and planet mass but is invariant with the pebble mass flux. Our results imply that the opacity of a forming planetary envelope can not be approximated by a value that is constant with either depth or planet mass. When applied to the Solar System, we argue that Uranus and Neptune could not have maintained a sufficiently high opacity to avoid runaway gas accretion unless they both experienced sufficiently rapid accretion of solids and formed late.
A key process in planet formation is the exchange of angular momentum between a growing planet and the protoplanetary disc, which makes the planet migrate through the disc. Several works show that in general low-mass and intermediate-mass planets mig rate towards the central star, unless corotation torques become dominant. Recently, a new kind of torque, called the thermal torque, was proposed as a new source that can generate outward migration of low-mass planets. While the Lindblad and corotation torques depend mostly on the properties of the protoplanetary disc and on the planet mass, the thermal torque depends also on the luminosity of the planet, arising mainly from the accretion of solids. Thus, the accretion of solids plays an important role not only in the formation of the planet but also in its migration process. In a previous work, we evaluated the thermal torque effects on planetary growth and migration mainly in the planetesimal accretion paradigm. In this new work, we study the role of the thermal torque within the pebble accretion paradigm. Computations are carried out consistently in the framework of a global model of planet formation that includes disc evolution, dust growth and evolution, and pebble formation. We also incorporate updated prescriptions of the thermal torque derived from high resolution hydrodynamical simulations. Our simulations show that the thermal torque generates extended regions of outward migration in low viscosity discs. This has a significant impact in the formation of the planets.
Pebble accretion is an emerging paradigm for the fast growth of planetary cores. Pebble flux and pebble sizes are the key parameters used in the pebble accretion models. We aim to derive the pebble sizes and fluxes from state-of-the-art dust coagulat ion models, understand their dependence on disk parameters and the fragmentation threshold velocity, and the impact of those on the planetary growth by pebble accretion. We use a one-dimensional dust evolution model including dust growth and fragmentation to calculate realistic pebble sizes and mass flux. We use this information to integrate the growth of planetary embryos placed at various locations in the protoplanetary disk. Pebble flux strongly depends on disk properties, such as its size and turbulence level, as well as on the dust aggregates fragmentation threshold. We find that dust fragmentation may be beneficial to planetary growth in multiple ways. First of all, it prevents the solids from growing to very large sizes, for which the efficiency of pebble accretion drops. What is more, small pebbles are depleted at a slower rate, providing a long-lasting pebble flux. As the full coagulation models are computationally expensive, we provide a simple method of estimating pebble sizes and flux in any protoplanetary disk model without substructure and with any fragmentation threshold velocity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا