ﻻ يوجد ملخص باللغة العربية
This article adresses the problem of automatic squamous cells classification for cervical cancer screening using Deep Learning methods. We study different architectures on a public dataset called Herlev dataset, which consists in classifying cells, obtained by cervical pap smear, regarding the severity of the abnormalities they represent. Furthermore, we use an attribution method to understand which cytomorphological features are actually learned as discriminative to classify severity of the abnormalities. Through this paper, we show how we trained a performant classifier: 74.5% accuracy on severity classification and 94% accuracy on normal/abnormal classification.
Recently, the coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries, influencing billions of humans. To control the infection, identifying and separating the infected people is the most crucial step. The main diagnos
Early and accurate diagnosis of Alzheimers disease (AD) and its prodromal period mild cognitive impairment (MCI) is essential for the delayed disease progression and the improved quality of patientslife. The emerging computer-aided diagnostic methods
Convolutional neural network based systems have largely failed to be adopted in many high-risk application areas, including healthcare, military, security, transportation, finance, and legal, due to their highly uninterpretable black-box nature. Towa
Automatic segmentation of the prostate cancer from the multi-modal magnetic resonance images is of critical importance for the initial staging and prognosis of patients. However, how to use the multi-modal image features more efficiently is still a c
Convolutional Neural Networks (CNNs) have been used for automated detection of prostate cancer where Area Under Receiver Operating Characteristic (ROC) curve (AUC) is usually used as the performance metric. Given that AUC is not differentiable, commo