ﻻ يوجد ملخص باللغة العربية
The antiferromagnetic (AF) compound MnBi$_{2}$Te$_{4}$ is suggested to be the first realization of an antiferromagnetic (AF) topological insulator. Here we report on inelastic neutron scattering studies of the magnetic interactions in MnBi$_{2}$Te$_{4}$ that possess ferromagnetic (FM) triangular layers with AF interlayer coupling. The spin waves display a large spin gap and pairwise exchange interactions within the triangular layer are frustrated due to large next-nearest neighbor AF exchange. The degree of frustration suggests proximity to a variety of magnetic phases, potentially including skyrmion phases, that could be accessed in chemically tuned compounds or upon the application of symmetry-breaking fields.
Crystal growth of MnBi$_{2}$Te$_{4}$ has delivered the first experimental corroboration of the 3D antiferromagnetic topological insulator state. Our present results confirm that the synthesis of MnBi$_{2}$Te$_{4}$ can be scaled-up and strengthen it a
We report a high frequency/high magnetic field electron spin resonance (HF-ESR) spectroscopy study in the sub-THz frequency domain of the two representatives of the family of magnetic topological insulators (MnBi$_{2}$Te$_{4}$)(Bi$_{2}$Te$_{3}$)$_{n}
The interplay between magnetism and non-trivial topology in magnetic topological insulators (MTI) is expected to give rise to a variety of exotic topological quantum phenomena, such as the quantum anomalous Hall (QAH) effect and the topological axion
Using scanning tunneling microscopy and spectroscopy, we visualized the native defects in antiferromagnetic topological insulator $mathrm{MnBi_2Te_4}$. Two native defects $mathrm{Mn_{Bi}}$ and $mathrm{Bi_{Te}}$ antisites can be well resolved in the t
Using angle-resolved photoelectron spectroscopy (ARPES), we investigate the surface electronic structure of the magnetic van der Waals compounds MnBi$_4$Te$_7$ and MnBi$_6$Te$_{10}$, the $n=$~1 and 2 members of a modular (Bi$_2$Te$_3$)$_n$(MnBi$_2$Te