ترغب بنشر مسار تعليمي؟ اضغط هنا

A frequentist analysis of three right-handed neutrinos with GAMBIT

99   0   0.0 ( 0 )
 نشر من قبل Tomas Gonzalo
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The extension of the Standard Model by right-handed neutrinos can not only explain the active neutrino masses via the seesaw mechanism, it is also able solve a number of long standing problems in cosmology. Especially, masses below the TeV scale are of particular interest as they can lead to a plethora of signatures in experimental searches. We present the first full frequentist analysis of the extension of the Standard Model by three right-handed neutrinos, with masses between 60 MeV and 500 GeV, using the Global and Modular BSM (beyond the Standard Model) Inference Tool GAMBIT. Our analysis is based on the Casas-Ibarra parametrisation and includes a large range of experimental constraints: active neutrino mixing, indirect constraints from, e.g., electroweak precision observables and lepton universality, and numerous direct searches for right-handed neutrinos. To study their overall effect, we derive combined profile likelihood results for the phenomenologically most relevant parameter projections. Furthermore, we discuss the role of (marginally) statistically preferred regions in the parameter space. Finally, we explore the flavour mixing pattern of the three right-handed neutrinos for different values of the lightest neutrino mass. Our results comprise the most comprehensive assessment of the model with three right-handed neutrinos model below the TeV scale so far, and provide a robust ground for exploring the impact of future constraints or detections.



قيم البحث

اقرأ أيضاً

Several models of neutrino masses predict the existence of neutral heavy leptons. Here, we review current constraints on heavy neutrinos and apply a new formalism separating new physics from Standard Model. We discuss also the indirect effect of extra heavy neutrinos in oscillation experiments.
We consider right-handed neutrino pair production in generic $Z^prime$ models. We propose a new, model-independent analysis using final states containing a pair of same-sign muons. A key aspect of this analysis is the reconstruction of the RH neutrin o mass, which leads to a significantly improved sensitivity. Within the $U(1)_{(B-L)_{3}}$ model, we find that at the HL-LHC it will be possible to probe RH neutrino masses in the range $0.2lesssim M_{N_R} lesssim 1.1,$TeV.
We entertain the possibility that neutrino masses and dark matter (DM) originate from a common composite dark sector. A minimal effective theory can be constructed based on a dark $SU(3)_D$ interaction with three flavors of massless dark quarks; elec troweak symmetry breaking gives masses to the dark quarks. By assigning a $mathbb Z_2$ charge to one flavor, a stable dark kaon can provide a good thermal relic DM candidate. We find that dark neutrons may be identified as right handed Dirac neutrinos. Some level of neutron-anti-neutron oscillation in the dark sector can then result in non-zero Majorana masses for light Standard Model neutrinos. A simple ultraviolet completion is presented, involving additional heavy $SU(3)_D$-charged particles with electroweak and lepton Yukawa couplings. At our benchmark point, there are dark pions that are much lighter than the Higgs and we expect spectacular collider signals arising from the UV framework. This includes the decay of the Higgs boson to $tau tau ell ell^{prime}$, where $ell$($ell$) can be any lepton, with displaced vertices. We discuss the observational signatures of this UV framework in dark matter searches and primordial gravitational wave experiments; the latter signature is potentially correlated with the $H to tau tau ell ell^{prime}$ decay.
We study the equilibration of the right-helicity states of light Dirac neutrinos in the early universe by solving the momentum dependent Boltzmann equations numerically. We show that the main effect is due to electroweak gauge boson poles, which enha nce thermalization rates by some three orders of magnitude. The right-helicity states of tau neutrinos will be brought in equilibrium independently of their initial distribution at a temperature above the poles if the tau neutrino mass is larger than about 10 keV.
We consider the possibility of having a MeV right-handed neutrino as a dark matter constituent. The initial reason for this study was the 511 keV spectral line observed by the satellite experiment INTEGRAL: could it be due to an interaction between d ark matter and baryons? Independently of this, we find a number of constraints on the assumed right-handed interactions. They arise in particular from the measurements by solar neutrino experiments. We come to the conclusion that such particles interactions are possible, and could reproduce the peculiar angular distribution, but not the rate of the INTEGRAL signal. However, we stress that solar neutrino experiments are susceptible to provide further constraints in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا