ﻻ يوجد ملخص باللغة العربية
Chiral and deconfinement phase transitions at finite temperature $T$ and quark number chemical potential $mu$ are simultaneously studied in the quenched dynamical holographic QCD model within the Einstein-Dilaton-Maxwell framework. By calculating the corresponding order parameters, i.e., the chiral condensate and Polyakov loop, it is shown that the transition lines of these two phase transitions are separated in the $T-mu $ plane. The deconfinement phase transition is shown to be always of crossover type and the transition line depends weakly on the baryon number density. Differently, the chiral transition is of crossover at small baryon number density and it turns to be of first order at sufficient large baryon number density. A critical endpoint (CEP), at which the transition becomes second order type, appears in the chiral transition line. This is the first time to realize the CEP of chiral phase transition in the $(T, mu)$ plane using the holographic EMD(Einstein-Maxwell-Dilaton) model for two flavour case. It is observed that between these two phase transition lines, there is a region with chiral symmetry restored and color degrees still confined, which could be considered as the quarkyonic phase. Qualitatively, this behavior is in consistent with the result in the Polyakov-loop improved Nambu-Jona-Lasinio (PNJL) model.
We employ an Einstein-Maxwell-Dilaton (EMD) holographic model, which is known to be in good agreement with lattice results for the QCD equation of state with $(2+1)$ flavors and physical quark masses, to investigate the temperature and baryon chemica
We show that the magnitude of the order parameters in Polyakov-Nambu-Jona-Lasinio (PNJL) model, given by the quark condensate and the Polyakov loop, can be used as a criterium to clearly identify, without ambiguities, phases and boundaries of the str
We consider the holographic QCD model with a planar horizon in the D dimensions with different consistent metric solutions. We investigate the black hole thermodynamics, phase diagram and equations of state (EoS) in different dimensions. The temperat
Supplementing the holographic Einstein-Maxwell-dilaton model of [O. DeWolfe, S.S. Gubser, C. Rosen, Phys. Rev. D83 (2011) 086005; O. DeWolfe, S.S. Gubser, C. Rosen, Phys. Rev. D84 (2011) 126014] by input of lattice QCD data for 2+1 flavors and physic
In the framework of a holographic QCD approach we study an influence of matters on the deconfinement temperature, $T_c$. We first consider quark flavor number ($N_f$) dependence of $T_c$. We observe that $T_c$ decreases with $N_f$, which is consisten