ﻻ يوجد ملخص باللغة العربية
The success of direct laser-driven inertial confinement fusion (ICF) relies critically on the efficient coupling of laser light to plasma. At ignition scale, the absolute stimulated Raman scattering (SRS) instability can severely inhibit this coupling by redirecting and strongly depleting laser light. This Letter describes a new dynamic saturation regime of the absolute SRS instability. The saturation occurs when spatiotemporal fluctuations in the ion-acoustic density detune the instability resonance. The dynamic saturation mitigates the strong depletion of laser light and enhances its transmission through the instability region, explaining the coupling of laser light to ICF targets at higher plasma densities.
Working by analogy, we use the description of light fluctuations due to random collisions of the radiating atoms to figure out why the reduction of the coherence for light propagating a cosmological distance in the fluctuating background space is neg
Laser-induced breakdown spectroscopy (LIBS) show enhancement in its signal, when the laser-induced plasma is confined/decelerated under the effect of an external steady magnetic field or in a small cavity. An enhancement in LIBS signal has been obser
Electrons at the surface of a plasma that is irradiated by a laser with intensity in excess of $10^{23}~mathrm{W}mathrm{cm}^{-2}$ are accelerated so strongly that they emit bursts of synchrotron radiation. Although the combination of high photon and
The strong-coupling mode, called quasimode, will be excited by stimulated Brillouin scattering (SBS) in high-intensity laser-plasma interaction. And SBS of quasimode will compete with SBS of fast mode (or slow mode) in multi-ion species plasmas, thus
Laser-generated plasma gratings are dynamic optical elements for the manipulation of coherent light at high intensities, beyond the damage threshold of solid-stated based materials. Their formation, evolution and final collapse require a detailed und