ﻻ يوجد ملخص باللغة العربية
Apparatus for fluorescence-based single photon generation includes collection optics and various setups for characterization. Managing this system often reveals complexity in such a way that adjusting in a small region changes optimal alignments of others. We suggest here a modular system, where the optimal alignment is given to each compartment and tested independently. Based on this concept, we built a system for single photon generation with fluorescence center in hexagonal boron nitride nano-flake, advantageous for scaling up the number of single mode fiber output and a high degree of stability. The system allowed for a practical use of single photon stream extended over an hour with a uniform count rate of small fluctuation levels.
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena. Demonstrations of such processes have, however, been limited to probabilistic sources, for instance, spontaneous parametric down-conversion or
We propose a novel method for generating broadband spontaneous parametric fluorescence by using a set of bulk nonlinear crystals (NLCs). We also demonstrate this scheme experimentally. Our method employs a superposition of spontaneous parametric fluo
Single photons are fundamental elements for quantum information technologies such as quantum cryptography, quantum information storage and optical quantum computing. Colour centres in diamond have proven to be stable single photon sources and thus es
The ability to generate complex optical photon states involving entanglement between multiple optical modes is not only critical to advancing our understanding of quantum mechanics but will play a key role in generating many applications in quantum t
We demonstrate a high-accuracy distributed fiber-optic temperature sensor using superconducting nanowire single-photon detectors and single-photon counting techniques. Our demonstration uses inexpensive single-mode fiber at standard telecommunication