ﻻ يوجد ملخص باللغة العربية
We numerically study the single-flavor Schwinger model with a topological $theta$-term, which is practically inaccessible by standard lattice Monte Carlo simulations due to the sign problem. By using numerical methods based on tensor networks, especially the one-dimensional matrix product states, we explore the non-trivial $theta$-dependence of several lattice and continuum quantities in the Hamiltonian formulation. In particular, we compute the ground-state energy, the electric field, the chiral fermion condensate, and the topological vacuum susceptibility for positive, zero, and even negative fermion mass. In the chiral limit, we demonstrate that the continuum model becomes independent of the vacuum angle $theta$, thus respecting CP invariance, while lattice artifacts still depend on $theta$. We also confirm that negative masses can be mapped to positive masses by shifting $thetarightarrow theta +pi$ due to the axial anomaly in the continuum, while lattice artifacts non-trivially distort this mapping. This mass regime is particularly interesting for the (3+1)-dimensional QCD analog of the Schwinger model, the sign problem of which requires the development and testing of new numerical techniques beyond the conventional Monte Carlo approach.
We perform a digital quantum simulation of a gauge theory with a topological term in Minkowski spacetime, which is practically inaccessible by standard lattice Monte Carlo simulations. We focus on $1+1$ dimensional quantum electrodynamics with the $t
For the past twenty years, Matrix Product States (MPS) have been widely used in solid state physics to approximate the ground state of one-dimensional spin chains. In this paper, we study homogeneous MPS (hMPS), or MPS constructed via site-independen
Just as matrix product states represent ground states of one-dimensional quantum spin systems faithfully, continuous matrix product states (cMPS) provide faithful representations of the vacuum of interacting field theories in one spatial dimension. U
We construct a tensor network representation of the partition function for the massless Schwinger model on a two dimensional lattice using staggered fermions. The tensor network representation allows us to include a topological term. Using a particul
Using a recently introduced tensor network method, we study the density of states of the lattice Schwinger model, a standard testbench for lattice gauge theory numerical techniques, but also the object of recent experimental quantum simulations. We i