ﻻ يوجد ملخص باللغة العربية
We study the conditions under which a non-standard Wigner class concerning discrete symmetries may arise for massive spin one-half states. The mass dimension one fermionic states are shown textcolor{red}{to} constitute explicit examples. We also show how to conciliate these states with the current criticism due to the Lee and Wick, and Weinberg formulation.
Since the 1928 seminal work of Dirac, and its subsequent development by Weinberg, a view is held that there is a unique Fermi field of spin one-half. It is endowed with mass dimension three-half. Combined, these characteristics profoundly affect the
We investigate in detail the interaction between the spin-${1/2}$ fields endowed with mass dimension one and the graviton. We obtain an interaction vertex that combines the characteristics of scalar-graviton and Diracs fermion-graviton vertices, due
A new approach to the two-body problem based on the extension of the $SL(2,C)$ group to the $Sp(4,C)$ one is developed. The wave equation with the Lorentz-scalar and Lorentz-vector potential interactions for the system of one spin-1/2 and one spin-0 particle with unequal masses is constructed.
It is well known that the usual formulation of Elko spinor fields leads to a subtle Lorentz symmetry break encoded in the spin sums. Recently it was proposed a redefinition in the dual structure, along with a given mathematical device, which eliminat
In this work we use momentum-space techniques to evaluate the propagator $G(x,x^{prime})$ for a spin $1/2$ mass dimension one spinor field on a curved Friedmann-Robertson-Walker spacetime. As a consequence, we built the one-loop correction to the eff