ﻻ يوجد ملخص باللغة العربية
We present three-dimensional force-free electrodynamics simulations of magnetar magnetospheres that demonstrate the instability of certain degenerate, high energy equilibrium solutions of the Grad-Shafranov equation. This result indicates the existence of an unstable branch of twisted magnetospheric solutions and allows to formulate an instability criterion. The rearrangement of magnetic field lines as a consequence of this instability triggers the dissipation of up to 30% of the magnetospheric energy on a thin layer above the magnetar surface. During this process, we predict an increase of the mechanical stresses onto the stellar crust, which can potentially result in a global mechanical failure of a significant fraction of it. We find that the estimated energy release and the emission properties are compatible with the observed giant flare events. The newly identified instability is a candidate for recurrent energy dissipation, which could explain part of the phenomenology observed in magnetars.
In this paper we propose a new mechanism describing the initial spike of giant flares in the framework of the starquake model. We investigate the evolution of a plasma on a closed magnetic flux tube in the magnetosphere of a magnetar in the case of a
The X-ray spectra observed in the persistent emission of magnetars are evidence for the existence of a magnetosphere. The high-energy part of the spectra is explained by resonant cyclotron upscattering of soft thermal photons in a twisted magnetosphe
Lyutikov (2002) predicted radio emission from soft gamma-ray repeaters (SGRs) during their bursting activity. Detection of a Mega-Jansky radio burst in temporal coincidence with high energy bursts from a Galactic magnetar SGR 1935+2154 confirms that
We investigate the temporal evolution of an axisymmetric magnetosphere around a rapidly rotating, stellar-mass black hole, applying a two-dimensional particle-in-cell simulation scheme. Adopting a homogeneous pair production, and assuming that the ma
Magnetar bursts can be emitted by Alfven waves growing in the outer magnetosphere to nonlinear amplitudes, $delta B/Bsim 1$, and triggering magnetic reconnection. Similar magnetic flares should occur quasi-periodically in a magnetized neutron star bi