ترغب بنشر مسار تعليمي؟ اضغط هنا

A Bayesian decision-theoretic approach to incorporate preclinical information into phase I oncology trials

80   0   0.0 ( 0 )
 نشر من قبل Haiyan Zheng
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Leveraging preclinical animal data for a phase I first-in-man trial is appealing yet challenging. A prior based on animal data may place large probability mass on values of the dose-toxicity model parameter(s), which appear infeasible in light of data accrued from the ongoing phase I clinical trial. In this paper, we seek to use animal data to improve decision making in a model-based dose-escalation procedure for phase I oncology trials. Specifically, animal data are incorporated via a robust mixture prior for the parameters of the dose-toxicity relationship. This prior changes dynamically as the trial progresses. After completion of treatment for each cohort, the weight allocated to the informative component, obtained based on animal data alone, is updated using a decision-theoretic approach to assess the commensurability of the animal data with the human toxicity data observed thus far. In particular, we measure commensurability as a function of the utility of optimal prior predictions for the human responses (toxicity or no toxicity) on each administered dose. The proposed methodology is illustrated through several examples and an extensive simulation study. Results show that our proposal can address difficulties in coping with prior-data conflict commencing in sequential trials with a small sample size.



قيم البحث

اقرأ أيضاً

The estimand framework included in the addendum to the ICH E9 guideline facilitates discussions to ensure alignment between the key question of interest, the analysis, and interpretation. Therapeutic knowledge and drug mechanism play a crucial role i n determining the strategy and defining the estimand for clinical trial designs. Clinical trials in patients with hematological malignancies often present unique challenges for trial design due to complexity of treatment options and existence of potential curative but highly risky procedures, e.g. stem cell transplant or treatment sequence across different phases (induction, consolidation, maintenance). Here, we illustrate how to apply the estimand framework in hematological clinical trials and how the estimand framework can address potential difficulties in trial result interpretation. This paper is a result of a cross-industry collaboration to connect the International Conference on Harmonisation (ICH) E9 addendum concepts to applications. Three randomized phase 3 trials will be used to consider common challenges including intercurrent events in hematologic oncology trials to illustrate different scientific questions and the consequences of the estimand choice for trial design, data collection, analysis, and interpretation. Template language for describing estimand in both study protocols and statistical analysis plans is suggested for statisticians reference.
207 - Suyu Liu , Ying Yuan 2013
Interval designs are a class of phase I trial designs for which the decision of dose assignment is determined by comparing the observed toxicity rate at the current dose with a prespecified (toxicity tolerance) interval. If the observed toxicity rate is located within the interval, we retain the current dose; if the observed toxicity rate is greater than the upper boundary of the interval, we deescalate the dose; and if the observed toxicity rate is smaller than the lower boundary of the interval, we escalate the dose. The most critical issue for the interval design is choosing an appropriate interval so that the design has good operating characteristics. By casting dose finding as a Bayesian decision-making problem, we propose new flexible methods to select the interval boundaries so as to minimize the probability of inappropriate dose assignment for patients. We show, both theoretically and numerically, that the resulting optimal interval designs not only have desirable finite- and large-sample properties, but also are particularly easy to implement in practice. Compared to existing designs, the proposed (local) optimal design has comparable average performance, but a lower risk of yielding a poorly performing clinical trial.
Crime prevention strategies based on early intervention depend on accurate risk assessment instruments for identifying high risk youth. It is important in this context that the instruments be convenient to administer, which means, in particular, that they must be reasonably brief; adaptive screening tests are useful for this purpose. Although item response theory (IRT) bears a long and rich history in producing reliable adaptive tests, adaptive tests constructed using classification and regression trees are becoming a popular alternative to the traditional IRT approach for item selection. On the upside, unlike IRT, tree-based questionnaires require no real-time parameter estimation during administration. On the downside, while item response theory provides robust criteria for terminating the exam, the stopping criterion for a tree-based adaptive test (the maximum tree depth) is unclear. We present a Bayesian decision theory approach for characterizing the trade-offs of administering tree-based questionnaires of different lengths. This formalism involves specifying 1) a utility function measuring the goodness of the assessment; 2) a target population over which this utility should be maximized; 3) an action space comprised of different-length assessments, populated via a tree-fitting algorithm. Using this framework, we provide uncertainty estimates for the trade-offs of shortening the exam, allowing practitioners to determine an optimal exam length in a principled way. The method is demonstrated through an application to youth delinquency risk assessment in Honduras.
We propose a hierarchical Bayesian model to estimate the proportional contribution of source populations to a newly founded colony. Samples are derived from the first generation offspring in the colony, but mating may occur preferentially among migra nts from the same source population. Genotypes of the newly founded colony and source populations are used to estimate the mixture proportions, and the mixture proportions are related to environmental and demographic factors that might affect the colonizing process. We estimate an assortative mating coefficient, mixture proportions, and regression relationships between environmental factors and the mixture proportions in a single hierarchical model. The first-stage likelihood for genotypes in the newly founded colony is a mixture multinomial distribution reflecting the colonizing process. The environmental and demographic data are incorporated into the model through a hierarchical prior structure. A simulation study is conducted to investigate the performance of the model by using different levels of population divergence and number of genetic markers included in the analysis. We use Markov chain Monte Carlo (MCMC) simulation to conduct inference for the posterior distributions of model parameters. We apply the model to a data set derived from grey seals in the Orkney Islands, Scotland. We compare our model with a similar model previously used to analyze these data. The results from both the simulation and application to real data indicate that our model provides better estimates for the covariate effects.
In this paper, we present a case study demonstrating how dynamic and uncertain criteria can be incorporated into a multicriteria analysis with the help of discrete event simulation. The simulation guided multicriteria analysis can include both moneta ry and non-monetary criteria that are static or dynamic, whereas standard multi criteria analysis only deals with static criteria and cost benefit analysis only deals with static monetary criteria. The dynamic and uncertain criteria are incorporated by using simulation to explore how the decision options perform. The results of the simulation are then fed into the multicriteria analysis. By enabling the incorporation of dynamic and uncertain criteria, the dynamic multiple criteria analysis was able to take a unique perspective of the problem. The highest ranked option returned by the dynamic multicriteria analysis differed from the other decision aid techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا