We report direct-detection constraints on light dark matter particles interacting with electrons. The results are based on a method that exploits the extremely low levels of leakage current of the DAMIC detector at SNOLAB of 2-6$times$10$^{-22}$ A cm$^{-2}$. We evaluate the charge distribution of pixels that collect $<10~rm{e^-}$ for contributions beyond the leakage current that may be attributed to dark matter interactions. Constraints are placed on so-far unexplored parameter space for dark matter masses between 0.6 and 100 MeV$c^{-2}$. We also present new constraints on hidden-photon dark matter with masses in the range $1.2$-$30$ eV$c^{-2}$.
We present direct detection constraints on the absorption of hidden-photon dark matter with particle masses in the range 1.2-30 eV$c^{-2}$ with the DAMIC experiment at SNOLAB. Under the assumption that the local dark matter is entirely constituted of
hidden photons, the sensitivity to the kinetic mixing parameter $kappa$ is competitive with constraints from solar emission, reaching a minimum value of 2.2$times$$10^{-14}$ at 17 eV$c^{-2}$. These results are the most stringent direct detection constraints on hidden-photon dark matter in the galactic halo with masses 3-12 eV$c^{-2}$ and the first demonstration of direct experimental sensitivity to ionization signals $<$12 eV from dark matter interactions.
We present constraints on the existence of weakly interacting massive particles (WIMPs) from an 11 kg-day target exposure of the DAMIC experiment at the SNOLAB underground laboratory. The observed energy spectrum and spatial distribution of ionizatio
n events with electron-equivalent energies $>$200 eV$_{rm ee}$ in the DAMIC CCDs are consistent with backgrounds from natural radioactivity. An excess of ionization events is observed above the analysis threshold of 50 eV$_{rm ee}$. While the origin of this low-energy excess requires further investigation, our data exclude spin-independent WIMP-nucleon scattering cross sections $sigma_{chi-n}$ as low as $3times 10^{-41}$ cm$^2$ for WIMPs with masses $m_{chi}$ from 7 to 10 GeV$c^{-2}$ . These results are the strongest constraints from a silicon target on the existence of WIMPs with $m_{chi}$$<$9 GeV$c^{-2}$ and are directly relevant to any dark matter interpretation of the excess of nuclear-recoil events observed by the CDMS silicon experiment in 2013.
We introduce the fully-depleted charge-coupled device (CCD) as a particle detector. We demonstrate its low energy threshold operation, capable of detecting ionizing energy depositions in a single pixel down to 50 eVee. We present results of energy ca
librations from 0.3 keVee to 60 keVee, showing that the CCD is a fully active detector with uniform energy response throughout the silicon target, good resolution (Fano ~0.16), and remarkable linear response to electron energy depositions. We show the capability of the CCD to localize the depth of particle interactions within the silicon target. We discuss the mode of operation and unique imaging capabilities of the CCD, and how they may be exploited to characterize and suppress backgrounds. We present the first results from the deployment of 250 um thick CCDs in SNOLAB, a prototype for the upcoming DAMIC100. DAMIC100 will have a target mass of 0.1 kg and should be able to directly test the CDMS-Si signal within a year of operation.
We present new observational constraints on the elastic scattering of dark matter with electrons for dark matter masses between 10 keV and 1 TeV. We consider scenarios in which the momentum-transfer cross section has a power-law dependence on the rel
ative particle velocity, with a power-law index $n in {-4,-2,0,2,4,6}$. We search for evidence of dark matter scattering through its suppression of structure formation. Measurements of the cosmic microwave background temperature, polarization, and lensing anisotropy from textit{Planck} 2018 data and of the Milky Way satellite abundance measurements from the Dark Energy Survey and Pan-STARRS1 show no evidence of interactions. We use these data sets to obtain upper limits on the scattering cross section, comparing them with exclusion bounds from electronic recoil data in direct detection experiments. Our results provide the strongest bounds available for dark matter--electron scattering derived from the distribution of matter in the Universe, extending down to sub-MeV dark matter masses, where current direct detection experiments lose sensitivity.
The increasingly significant tensions within $Lambda$CDM, combined with the lack of detection of dark matter (DM) in laboratory experiments, have boosted interest in non-minimal dark sectors, which are theoretically well-motivated and inspire new sea
rch strategies for DM. Here we consider, for the first time, the possibility of DM having simultaneous interactions with photons, baryons, and dark radiation (DR). We have developed a new and efficient version of the Boltzmann code CLASS that allows for one DM species to have multiple interaction channels. With this framework we reassess existing cosmological bounds on the various interaction coefficients in multi-interacting DM scenarios. We find no clear degeneracies between these different interactions and show that their cosmological effects are largely additive. We further investigate the possibility of these models to alleviate the cosmological tensions, and find that the combination of DM-photon and DM-DR interactions can at the same time reduce the $S_8$ tension (from $2.3sigma$ to $1.2sigma$) and the $H_0$ tension (from $4.3sigma$ to $3.1sigma$). The public release of our code will pave the way for the study of various rich dark sectors.
A. Aguilar-Arevalo
,D. Amidei
,D. Baxter
.
(2019)
.
"Constraints on Light Dark Matter Particles Interacting with Electrons from DAMIC at SNOLAB"
.
Karthik Ramanathan
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا