ترغب بنشر مسار تعليمي؟ اضغط هنا

A Quantitative Stability Theorem for Convolution on the Heisenberg Group

99   0   0.0 ( 0 )
 نشر من قبل Kevin O'Neill
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Kevin ONeill




اسأل ChatGPT حول البحث

Although convolution on Euclidean space and the Heisenberg group satisfy the same $L^p$ bounds with the same optimal constants, the former has maximizers while the latter does not. However, as work of Christ has shown, it is still possible to characterize near-maximizers. Specifically, any near-maximizing triple of the trilinear form for convolution on the Heisenberg group must be close to a particular type of triple of ordered Gaussians after adjusting by symmetry. In this paper, we use the expansion method to prove a quantitative version of this characterization.



قيم البحث

اقرأ أيضاً

We here revisit Fourier analysis on the Heisenberg group H^d. Whereas, according to the standard definition, the Fourier transform of an integrable function f on H^d is a one parameter family of bounded operators on L 2 (R^d), we define (by taking ad vantage of basic properties of Hermite functions) the Fourier transform f_H of f to be a uniformly continuous mapping on the set N^d x N^d xR {0} endowed with a suitable distance. This enables us to extend f_H to the completion of that space, and to get an explicit asymptotic description of the Fourier transform when the vertical frequency tends to 0. We expect our approach to be relevant for adapting to the Heisenberg framework a number of classical results for the Euclidean case that are based on Fourier analysis. As an example, we here establish an explicit extension of the Fourier transform for smooth functions on H^d that are independent of the vertical variable.
Let $mathcal{H}_0=V, mathcal{H}_1=B+V$ and $mathcal{H}_2=mathcal{L}+V$ be the operators on the Heisenberg group $mathbb{H}^n$, where $V$ is the operator of multiplication growing like $|g|^kappa, 0<kappa<1$, $B$ is a bounded linear operator and $math cal{L}$ is the sublaplacian on $mathbb{H}^n$. In this paper we prove Szego limit theorem for the operators $mathcal{H}_0, mathcal{H}_1$ and $mathcal{H}_2$ on $L^2(mathbb{H}^n).$
In this paper we investigate the $L^p$ boundedness of the lacunary maximal function $ M_{Ha}^{lac} $ associated to the spherical means $ A_r f$ taken over Koranyi spheres on the Heisenberg group. Closely following an approach used by M. Lacey in the Euclidean case, we obtain sparse bounds for these maximal functions leading to new unweighted and weighted estimates. The key ingredients in the proof are the $L^p$ improving property of the operator $A_rf$ and a continuity property of the difference $A_rf-tau_y A_rf$, where $tau_yf(x)=f(xy^{-1})$ is the right translation operator.
59 - Kevin ONeill 2018
One may define a trilinear convolution form on the sphere involving two functions on the sphere and a monotonic function on the interval $[-1,1]$. A symmetrization inequality of Baernstein and Taylor states that this form is maximized when the two fu nctions on the sphere are replaced with their nondecreasing symmetric rearrangements. In the case of indicator functions, we show that under natural hypotheses, the symmetric rearrangements are the only maximizers up to symmetry by establishing a sharpened inequality.
We prove an analogue of Chernoffs theorem for the Laplacian $ Delta_{mathbb{H}} $ on the Heisenberg group $ mathbb{H}^n.$ As an application, we prove Ingham type theorems for the group Fourier transform on $ mathbb{H}^n $ and also for the spectral projections associated to the sublaplacian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا