The generalized spin-orbit interaction: a microscopic origin of the {O}rsted magnetic field


الملخص بالإنكليزية

This work introduces a generalization of the form of the spin-orbit interaction, the generalized spin-orbit interaction (GSOI). It expresses the magnetic field induced by two charged particles moving with a non-zero relative velocity as a field defined at all points in space, and exists in the reference frames of both particles. This is in contrast to spin-orbit interaction theory, in which the generated magnetic field is defined at only one point in space, and exists in the reference frame of one of the two particles. At the macroscopic scale, it is shown that the GSOI theory implies the same form of the O{}rsted magnetic field produced by a current-carrying wire. However, the theory is incompatible with the microscopic form of the Biot-Savart equation that implies that a charged particle induces a magnetic field by having a non-zero velocity. The implications of the GSOI theory on properties of the O{}rsted magnetic field in current-carrying atomically thin two-dimensional materials, such as graphene, are discussed. The framework established in this paper aims at re-imagining classical physical concepts in light of an advanced microscopic understanding.

تحميل البحث